AI 시대, 미스코리아의 자질
AI 윤리 뉴스 브리프 2024년 10월 첫째 주by 🍊산디 1. 미스코리아의 자질 처음 이미지를 보았을 때 허위정보일 거라 생각했습니다. 딥페이크 성착취물로 인한 피해가 명백히 존재하고, 형사 수사와 소송이 진행 중이며, 이를 예방하기 위한 입법까지 이루어지는 와중에 이런 일이 발생했다는 사실이 참담합니다. 미스코리아는 도대체 어떤 여성을 선발하는 자리입니까? 성범죄 목적으로 활용되는 기술마저도 밝게 웃으며 괜찮다고 이야기해주는 아름다움을 기대했던 건가요? 주최측은 사과와 함께 “인공지능(AI) 기술이 영화, 광고, 교육 등에 광범위하게 활용되는 세태에 대한 생각을 듣기 위해 질문을 제시한 것”이라고 해명했습니다. 그런 취지의 질문이었다면 🦜AI 윤리 레터가 매 주 쏟아내는 질문들을 활용하셨다면 좋았을 텐데요. 🦜 더 읽어보기- 산업화하는 딥페이크 성착취물(2024-08-26)- 딥페이크 성착취물 논의, 어디로 흘러가는가(2024-09-02)- 사진 내리기 말고 할 수 있는 일: AI 기업에 요구하기(2024-09-04)- 정말로 대안이 없을까?(2024-09-11) 2. 떠나는 리더십, ‘비영리단체’ 오픈AI는 없다 오픈AI의 핵심 인물 중 하나인 미라 무라티 최고기술책임자(CTO)가 회사를 떠납니다. 이유는 알려지지 않았습니다. 무라티는 샘 올트먼 축출 당시 임시 CEO를 맡으며 그의 복귀를 지지한 것으로 유명하죠. 동영상 생성 모델 ‘소라’의 학습 데이터를 묻는 질문에 ‘모른다’고 답하며 바이럴을 탔던 인물이기도 합니다. 그의 이탈 소식에 회사 직원들은 ‘WTF(이게 뭐야!)’ 이모지를 공유했다고 하네요. 미라 무라티의 이탈은 오픈AI가 수익 사업체로 개편하고 샘 올트먼에게 7%의 지분 제공하기 위한 투자금 유치 마무리 단계에서 이루어졌습니다. 7%의 지분의 경제적 가치는 105억 달러로 추정됩니다. 오픈AI는 창립과 함께 비영리단체로서의 기업 구조를 자신들의 신뢰가능성을 입증하는 증거로 언급해 왔습니다. 하지만 마이크로소프트로부터 투자금을 끌어들이기 위해 2019년에는 영리부문을 만들더니, 이제는 투자자의 이익 상한선을 ‘소급적으로’ 폐지하면서 비영리 사업에 들어가던 돈까지 영리적 목적으로 활용하려는 모습입니다. 이로써 재정적 이익보다 인류의 이익을 앞세우겠다는 창립 당시 비전은 사라진 듯 하네요. 3. AI 디지털교과서, 왜 비판을 막나요? 내년부터 초등 3~4학년, 중1, 고1 영어, 수학, 정보 과목에 도입된다는 AI 디지털교과서. 그 중 정보, 수학 과목 AI디지털교과서 발행사의 다수가 검정심사에서 탈락했습니다. 검정심사를 통과한 교과서는 5개월 여 간 현장 적합성 검토를 거치게 됩니다. 언론 보도는 수십억을 투자하였으나 검정에 탈락하면서 내년 심사를 기약해야 하는 기업들의 처지에 집중합니다. 기업들이 교육부를 믿고 투자한 돈을 모두 날리게 되었다는 것이죠. 소수의 기업이 먼저 교과서 사업에 진출하는 데 대한 독과점 우려도 함께 제시합니다. 기업의 투자와 무관하게 교과서의 품질은 타협할 수 있는 성질의 것이 아닙니다. AI 디지털교과서의 필요성과 품질을 걱정하는 사람들의 목소리는 어디서 들을 수 있을까요? 서울시교육청은 전교조의 ‘AI 디지털교과서 도입 중단 촉구’ 주장이 중앙정부 확인 결과 허위임이 확인되었다며 수사를 의뢰하겠다고 했습니다. 정책 비판과 ‘허위’의 경계를 구분지을 수 있을까요. 자녀가 초중고교생인 학부모를 대상 AI 디지털교과서에 대해 물은 설문조사에서 응답자의 1/3은 AI 디지털교과서를 ‘들어본적도 없다’고 답했습니다. AI 디지털교과서에 대한 비판적 토론은 더욱 장려되어야 합니다. 진위를 밝히는 것은 토론이지 입막음이 아닙니다. 이번에도 형사 소송은 반론을 막는 수단이 되어버리는 것일까요. 4. AI 오용과 개발자의 책임 이전 🦜레터에서 소개드렸던 것처럼, 지난 8월 29일, 미국 캘리포니아 주 의회는 AI 규제 법안인 '안전하고 신뢰할 수 있는 최첨단 인공지능 모델을 위한 혁신법(SB 1047)'을 통과시켰습니다. 주지사 승인 단계만을 남겨둔 상태입니다. 개발자에게는 AI 모델 전 생애주기동안 발생할 수 있는 위험을 방지하기 위한 ‘합리적인 주의(reasonable care)’를 담은 프로토콜을 서면으로 만들어 보관하고, 주 법무장관이 그 원본에 접근할 수 있도록 공개할 의무가 부여됩니다. 이외에도 필요 시 모델을 중단할 수 있는 ‘킬 스위치’ 기능 개발, 모델의 변조를 방지하기 위한 안전조치 의무 등이 ‘개발자’에게 부과됩니다. 해당 법안은 개발자를 수범자로 합니다. '개발자(developer)'란 특정 모델의 초기 훈련을 수행하는 사람으로, 충분한 양의 컴퓨팅 파워와 비용을 사용하여 모델을 훈련하거나, 기존 모델 또는 파생 모델을 파인튜닝(fine-tuning)하는 데 있어 법이 정한 양보다 더 많은 컴퓨팅 파워와 비용을 사용한 자를 뜻합니다. 개발자가 개발한 모델뿐만 아니라 이를 토대로 파생된 모델 또한 개발자의 책임 범위에 포함됩니다. 이는 AI 모델을 복사하여, 파인튜닝이 아닌, 사후적인 수정 훈련을 가한 파생 모델(derivative)로 인해 위험이 발생했어도 최초 AI 모델의 개발자에게 책임을 묻겠다는 의미입니다. AI가 매개된 위험 발생 시 책임소재를 묻기 어려운 ‘책임 공백’이 발생할 것이라는 우려의 목소리가 존재합니다. 다른 한편 이러한 입법 움직임이 연구자, 오픈소스 커뮤니티의 AI 모델 개발을 저해할 것이라는 비판도 존재합니다. 하지만 법이 정한 기준 즉, 1억 달러 이상의 연산비용을 감당할 수 있는 개발자는 오픈AI와 같은 극소수에 불과할 것 같네요. 🦜더 읽어보기- 초지능 AI 규제 법안과 AI 하이프의 상관관계 (2024-09-02) #feedback 오늘 이야기 어떠셨나요?여러분의 유머와 용기, 따뜻함이 담긴 생각을 자유롭게 남겨주세요.남겨주신 의견은 추려내어 다음 AI 윤리 레터에서 함께 나눕니다.
·
4
·
"인간 중심"이 그래서 뭔데요?
인간 중심의 인공지능이 그래서 뭔데요? by 🥨채원 여기저기서 많이 보이는 말이죠. “인간 중심의 AI” — 언뜻 봤을 때 좋아보이긴 하는데, 정확히 무슨 뜻인지는 아무도 모르는 것 같기도 합니다. 한편에서는 인간 중심의 AI라는 개념 자체가 많은 이들이 동의하는 하나의 정의를 내리기 어렵다고 주장할 수도 있습니다. 새롭게 등장하여 아직 충분한 논의가 이루어지기 어려웠다고도 볼 수 있고요. 이런 경우, 일단 이 개념이 실제로 어떻게 쓰이는지를 분석하면 조금 더 명확하게 어떤 의미로 받아들여지고 있는지 알아볼 수 있습니다. 이러한 접근방식을 사용하여, 학계에서 쓰이는 인간 중심의 AI라는 개념이 구체적으로 어떻게 논의되는지 알아본 연구가 있습니다. 오늘 제가 같이 읽어보려고 가져온 ‘인간 중심의 인공지능에서 무엇이 인간 중심적인가?: 연구 지형 지도‘라는 제목의 논문입니다. 해당 논문은 2023년에 CHI (Conference on Human Factors in Computing Systems)라는 인간-컴퓨터 상호작용 분야의 학술대회에서 발표되었습니다. 저자들은 ‘인간 중심의 AI’ 혹은 ‘인간 중심의 머신러닝’을 키워드로 하는 (논문 작성 당시 2022년 7월 기준) 이천여편의 논문 중, 몇 단계의 필터링을 걸쳐 최종적으로 431편의 논문을 분석하였습니다. 그리고 인간 중심의 AI라는 개념이 얼마나 다양하게 쓰이고 있는지 실증적으로 보여줍니다. 저자들이 분석한 논문을 기반으로 만든 지도를 같이 살펴볼까요? 여기서 색깔은 각각의중심 주제를, 크기는 해당 주제에 속하는 논문의 비율을 보여줍니다. 오른쪽 하단의 가장 큰 파란색 원에서 보여주듯이, 인간 중심의 AI 연구 중 절반 정도는 인간 중심의 접근방식을 사용한 디자인 혹은 평가 방식을 사용하는 경우였습니다. 여기서 인간 중심의 접근도 다양한 맥락에서 사용되었습니다. 예를 들어 일부 연구는 AI가 사용되는 시스템이 사용자 (안무가나 방사선 전문가, 임산부 등)를 염두해 둔 디자인이라는 점에서 해당 AI를 ‘인간 중심적’이라고 일컫습니다. 이 외에도 왼쪽 하단의 녹색 부분이 나타내는 설명 가능하고 이해 가능한 AI 연구가 20% 정도, 왼쪽 상단의 분홍색으로 표현된 AI와 인간이 같은 팀으로 협력하는 시나리오의 연구가 20%정도 차지하고 있습니다. 이외에 오른쪽 상단의 다양한 노란색 원들은 공정성이나 편향 등을 연구하는 등 다양한 접근 방법의 윤리적 AI 연구를 나타냅니다. 저자들이 논문을 작성했던 2022년 여름에서 2년 이상 지난 지금 이러한 주제의 연구는 훨씬 많이 늘어났기 때문에, 지금도 이와 같은 비율로 연구가 이루어지지는 않을 수도 있습니다. 그러나 이러한 문헌 분석은 인간 중심의 AI라는 분야 안에 얼마나 다양한 주제가 공존하는지 보여줍니다. 여전히 알쏭달쏭한 인간 중심의 AI라는 개념이지만, 앞으로는 해당 키워드를 들었을 때 이 지도를 떠올리면서 구체적으로 어떤 의미로 사용되었는지 좀 더 명확하게 살펴볼 수 있지 않을까요? 누군가 특정 기술이 ‘인간 중심적’이라고 할 때, 누군가는 그저 사용자의 편의를 고려했다는 의미로 쓰기도 하고 누군가는 인간과 AI가 같이 무언가 한다는 의미로, 혹은 AI를 둘러싼 윤리, 법리, 신뢰의 문제를 이야기 하기도 한다는 것을요. 이러한 분석을 바탕으로 저자들은 인간 중심의 AI라는 단어에 대한 나름의 정의를 제공합니다. 인간 중심의 인공 지능은 데이터를 활용하여 인간 사용자에게 권한을 부여하고 지원하는 동시에 데이터의 기본 가치, 편견, 한계, 데이터 수집 및 알고리즘의 윤리를 공개하여 윤리적이고 상호 작용적이며 논쟁 가능한 사용을 촉진합니다.” (Capel & Brereton, 2023, 13쪽) 독자분들은 이 정의에 대해 어떻게 생각하시나요? 이 글을 읽기 전에 어렴풋이 갖고 있던 생각과 비슷한가요? 앞으로도 제가 재밌게 읽은 논문을 종종 가져와보도록 할게요! 지적장애인과 AI 기술의 바람직한 관계는? by 🤖아침 나와 AI 기술의 관계도 복잡한데, 지적장애인과 기술의 관계라니요. 장애인 당사자도, 관련 전문가도 아닌 입장에서 상당히 막막했지만 지난 여름 서울시공익활동지원센터에서 열린 공익활동 모임에서 이 질문을 마주하게 되었습니다. 지적장애인 아들을 둔 모임장님이 제시한 목표는 "인공지능 시대에 지적장애인이 소외되지 않도록 지금 우리가 할 수 있는 일이 무엇인지 찾고, 도움을 구하고, 시작하는 것". 기술의 희망찬 약속을 의식적으로 경계해온 저로서는 처음에 다소 긴장되기도 했습니다. 물론 모임에서는 폭넓은 관점을 다루며 기술이 장애인의 삶을 개선할 수 있으리라는 기대부터 오히려 소외를 강화하지 않을까 하는 우려까지 편하게 논의했는데요. 그럼에도 기술 비판적인 이야기를 꺼낼 때면 문득 작동하는 자기검열, 장애인과 AI의 긍정적 전망에 내가 뭐라고 찬물을 끼얹나 싶은 마음을 다스려야 했습니다. 불확실한 마음을 다스리고 갈피를 잡기 위해서 관련 자료를 함께 찾아보기도 했는데, 생각보다는 최근 AI 기술과 지적장애에 연관되는 사례를 찾기 쉽지 않았습니다. 시각 접근성을 개선하는 서비스나, 수어를 인식하는 컴퓨터 비전 기술, 언어 장애인을 위한 개인화된 음성 인식, 신체/인지 장애를 보조하는 외골격 로봇 등 각종 보조 기술을 테크 기업이 즐겨 홍보한다는 점을 생각했을 때 의외였습니다. 지적장애와 더 직접적으로 연결되는 사례 중 쉽게 접할 수 있는 것은 발달장애 진단 및 돌봄을 돕는 AI 모델이나 지적장애인 교육을 위한 맞춤형 챗봇 정도였습니다. 이같은 사례들은 주로 장애인을 기술의 혜택을 받는 수동적 수혜자로 상정하고 있어 아쉬운 점도 있습니다. 기술 수혜자보다 사용자로서 장애인 당사자의 삶과 기술이 연결되는 경험은 어떻게 만들 수 있을까요? 이런 고민을 거쳐, 실행에 옮길 수 있는 구체적 결과물로 (경도)지적장애인을 대상으로 하는 AI 워크숍을 설계하고 진행해보게 되었습니다. 10월 8일에 모임 과정과 결과를 (모임장님이) 공유하는 오프라인 행사가 있으니 관심 있는 분은 들러주세요. 보다 자세한 기록도 별도의 글로 정리할 예정입니다. 📆 소식- 당신 옆의 공.공.공. (2024-10-08) 서울시공익활동지원센터- AI 윤리와 가이드라인 (2024-10-21, 온라인) 국립중앙도서관 #feedback 오늘 이야기 어떠셨나요?여러분의 유머와 용기, 따뜻함이 담긴 생각을 자유롭게 남겨주세요.남겨주신 의견은 추려내어 다음 AI 윤리 레터에서 함께 나눕니다.
·
2
·
불완전한 AI 서비스의 시대
AI 윤리 뉴스 브리프 2024년 9월 4째 주by 🧙‍♂️텍스 1. 오픈AI의 챗GPT o1 프리뷰 공개 2024년 9월 12일, 오픈AI는 새로운 모델인 챗GPT o1을 프리뷰로 공개했습니다. 이 모델은 챗GPT에서 하나의 질문에 대해 복수의 답변과 추론 과정을 생성하도록 학습되었으며, 이 중에서 최선의 답변을 선택하는 능력을 강화했습니다. 추론 과정에서 복수의 응답을 선별하는 단계를 추가하고, 이를 위해 더 많은 시간과 계산 자원을 할당한 점에서 기존의 모델과 차별화됩니다. 데이터와 모델의 규모가 성능을 담보한다는 신경망 스케일 법칙(neural scaling law)이 학습 과정에만 적용되었다면, 이제는 이 법칙이 추론 과정에 걸리는 시간에도 확장되어 적용되고 있습니다. 자연스럽게, 여러 번의 질의 과정을 반복하면 오류가 발생할 확률은 기계적으로 줄어듭니다. 오픈AI의 챗GPT o1 프리뷰 공개 전, 오픈AI가 새 모델에 대해 최대 월 $2000의 구독제를 고려 중이라는 뉴스가 있었습니다. 현재 챗GPT 구독료가 월 $20임을 감안하면, 가장 비싼 모델은 추론 과정에 꽤 많은 자원을 할당하리라고 추측해 볼 수 있습니다. 이 정도의 계산 자원을 할당하면 AGI를 만들기에 충분한 성능을 제공하고 AI 정렬(Alignment) 또한 잘 이루어진다고 오픈AI가 자신하는지 궁금해집니다. 다만 아쉬운 점은 어떤 응답과 추론 과정을 좋은 것으로 간주할지에 대한 기준이 공개되지 않았다는 사실입니다. 최근 공개된 AI 안정성을 위한 강화학습 기법인 Rule-based Rewards에서 일부 기준을 다루고 있지만 그 외의 방법론에 대해서는 알려진 바가 없습니다. 심지어 오픈AI는 새로운 모델의 작동을 분석하는 유저들에게 경고하는 등 서비스용 AI 모델을 더욱더 불투명하게 만들고 있습니다. 오픈AI는 새로운 모델이 기존 모델 대비 비약적인 성능 향상을 보여준다고 주장하고 있습니다. 하지만, 기초적인 산수인 9.11과 9.9의 크기를 혼동하고, 추론 기준이 불투명한 모델에 대한 신뢰는 고민해 봐야 할 문제일 것으로 보입니다. 🦜 더 읽어보기- OpenAI Threatens to Ban Users Who Probe Its ‘Strawberry’ AI Models (Wired, 2024-09-17) 2. AI 사진 앱의 외설스러운 사진 합성 최근 기사에서는 네이버 자회사 스노우의 소다(SODA)와 스노우(SNOW) 사진 앱에서 제공하는 유료 AI 이미지 서비스에서 사용자가 의도하지 않은 외설스러운 사진이 합성되는 문제가 제기되었습니다. 스노우 측은 네거티브 프롬프트(negative prompt)를 통해 이러한 문제를 필터링하려 했으나, 이 기능이 완벽하게 작동하지 않았음을 인정하며, 앞으로 이를 더욱 고도화할 계획을 밝혔습니다. 그러나 원치 않는 결과에 대한 설명은 담은 네거티브 프롬프트의 개선은 필요하지만 근본적인 해결책은 아닙니다. 지난 번 AI 윤리 레터에서 공개 데이터셋인 LAION-5B가 여러 포르노 사이트로부터 데이터를 가져와 아동 성 착취물까지 포함하고 있다는 사실을 지적한 바 있습니다. 학습 데이터에 외설 이미지가 없다면 이러한 문제가 발생할 가능성은 매우 낮아지기 때문에, 이미지 생성 파운데이션 모델부터 철저히 검증되어야 합니다. 하지만, 파운데이션 모델의 검증 및 재학습은 큰 비용을 수반하기 때문에 개별 기업들은 네거티브 프롬프트와 같은 임시방편적 해결책을 선택하는 유혹을 받습니다. 따라서 실질적인 문제 해결을 위해서는 모든 기업에 동등하게 적용될 수 있는 정책이 필요합니다. 예를 들어, 문제를 야기한 파운데이션 모델의 폐기를 강제하는 등의 조치가 고려될 수 있습니다. 오픈소스 파운데이션 모델을 사용했다는 것이 면죄부가 될 수는 없기 때문입니다. 🦜 더 읽어보기- 사진 내리기 말고 할 수 있는 일: AI 기업에 요구하기 (2024-09-04) 3. 소버린 AI와 파운데이션 모델, 그리고 서비스 지디넷이 2024년 9월 16일에 보도한 네이버 하정우 퓨처AI센터장 인터뷰는 미국 시장 외의 기업이 AI에 어떻게 대응하고 있는지를 잘 보여주는 기사입니다. 최근 AI 관련 다양한 주제를 기업의 관점에서 다루고 있어 흥미롭게 읽을 수 있었습니다. 하 센터장은 자본 규모에서 큰 차이를 보이는 글로벌 빅테크와의 직접적인 기술 경쟁을 피하고, AI를 활용한 킬러 애플리케이션 서비스 발굴에 집중해야 한다고 주장합니다. 또한, 국내를 넘어 중동이나 아세안 지역에서 파트너 국가를 찾아 소버린 AI 개발을 추진하고, 이를 통해 AI를 수출해야 한다고 강조합니다. 그는 소버린 AI가 단순히 네이버의 어젠다가 아닌 대한민국의 성장 어젠다임을 강조하며, 개별 기업이 글로벌 빅테크와 경쟁하는 것은 어렵기 때문에 정부 주도의 적극적인 지원이 필요하다고 덧붙였습니다. 그러나 여전히 AI의 킬러 애플리케이션이 발굴되지 않은 상황에서 소버린 AI를 개발하는 것이 어떤 의미를 가지는지 의문이 듭니다. 소버린 AI라는 추상적인 개념보다는 AI 시대의 전자정부와 같은 구체적인 서비스에 집중하는 것이 더 효과적이지 않을까 생각됩니다. 또한, 국가 차원에서 GPU 컴퓨팅 센터를 구축하는 데 들어가는 막대한 투자에 비해 한국이 실질적으로 얻을 수 있는 이익이 얼마나 될지 고민하게 됩니다. 빅테크의 파운데이션 모델이 한국어 성능이 떨어지는 것은 품질 높은 한국어 데이터의 규모가 작은 것이 한 이유일 것이기에, 한국어 공개 데이터만 잘 구축해도 좋은 성능을 기대할 수 있습니다. 그렇다면 한국 회사들이 파운데이션 모델을 개발해야 할 이유는 무엇일까요? 🦜더 읽어보기- AI 행정, 피해자 개인이 아니라 공동체가 대응하려면? (2024-03-14)- 프랑스 AI 스타트업, EU의 뒷통수를 치다? (2024-03-06) #feedback 오늘 이야기 어떠셨나요?여러분의 유머와 용기, 따뜻함이 담긴 생각을 자유롭게 남겨주세요.남겨주신 의견은 추려내어 다음 AI 윤리 레터에서 함께 나눕니다.
·
2
·
정말로 대안이 없을까?
정말로 대안이 없을까? by 🥨 채원 저는 요즘 직접 얼굴을 보고 이야기하는 것보다, 메신저나 온라인 플랫폼을 통해 나누는 대화의 양이 더 많다고 느낍니다. 다른 나라에 살고 있는 친구들 뿐만 아니라, 재택 근무하는 직장 동료들, 멀리 떨어진 협업자들과도 메일이나 메신저로 소통하기 때문입니다. 그러나 우리의 이야기를 작성하고, 공유하는 데 사용하는 여러 플랫폼들이 미덥지만은 않습니다. 특히 텔레그램은 앱 내에서 일어나는 불법활동에 대한 조사의 일환으로 CEO가 프랑스에서 구속되었을 뿐만 아니라, 딥페이크 등의 기술을 활용하여 합성된 성착취물을 공유하는 대규모의 대화방이 알려지며 디지털 성범죄의 온상이라는 인식이 더욱 강화되기도 했습니다. 특히 후자의 경우에는 소셜 미디어 뿐만 아니라, 비교적 가까운 사람들에게만 공개된다고 생각했던 메신저에 공유하는 사진까지 악의적으로 알아내고 수집하여 범죄에 활용한 수법이 밝혀져, 더욱더 메신저 상에서 이루어지는 대화에 불안감을 조성했습니다. 그저 가까운 사람들과 마음 편히 대화를 나눌 수 있는, 그러면서도 광고나 다른 불필요한 기능에 시달리지 않는 메신저란 진정 불가능한 것일까요? ‘공짜’로 쓰기 위해서 당연히 감당해야만 한다고 생각했던 불편함을 견딜 필요가 없다면 어떨까요? 시그널 재단의 의장 메러디스 휘태커가 와이어드와 나눈 이야기를 듣다보면, 이런 희망사항이 막연히 불가능한 꿈은 아니라는 것을 깨닫게 됩니다. 저는 독일에 오고나서 시그널이라는 메신저를 처음 들어보았는데요, 어딘가 찝찝한 왓츠앱도, 한국 친구들만 사용하는 카카오톡도, 애플 유저들만 사용하는 메시지앱도 아닌 제 3의 메신저라는 사실만으로도 반가게 다가왔습니다. 깔끔한 유저 인터페이스 뿐만 아니라, 나의 동의 없이 대화방에 초대할 수 없게 만든 추가적인 안전장치 등 평소에 생각해보지 못했던 지점까지 고려된 앱이라는 점이 돋보였습니다. 그 이후로 몇 년째 꾸준히 사용하고 있던 차, 얼마 전 읽게된 메러디스 휘태커의 인터뷰는 시그널이 단순히 깔끔하고 좋은 앱 그 이상이라는 것을 느끼게 했습니다. 그는 시그널이 단순히 암호화된 무료 메신저일 뿐만 아니라, 감시 자본주의가 틀렸음을 증명하는 것이라고 말합니다. 시그널은 영리기업이 아닌 비영리재단입니다. 휘태커 의장은 암호화 이메일로 유명한 스위스의 프로톤 메일도 비영리 재단으로 전환하는 것을 고려하고 있다며, 테크 기업이 나아갈 수 있는 다양한 가능성에 대해 이야기합니다. 기술의 미래가 벤처 투자자나 감시 자본주의에 있지 않다는 것을 증명하기 위해 외부 투자도 받지 않고, 광고도 없으며, 사용자의 정보도 수집하지 않는 시그널의 정책은 우리가 알고있는 대부분의 테크 공식을 깨뜨립니다. 인터뷰에서 인상깊었던 구절 몇 가지를 소개하며 마치겠습니다. 인터뷰 전문을 읽어보시기를 강력하게 추천드립니다. “우리는 비영리재단입니다. 사람들이 동정하듯 던지는 동전으로 살아남기 위해서가 아니라, 동시대 역사적인 맥락 속에서 우리의 미션을 수행하기 위해 이러한 조직 구조가 매우 중요하기 때문입니다. 현재 우리 (테크) 업계에서 이익은 감시를 수익화하거나, 감시를 수익화하는 사람들에게 제품이나 서비스를 제공하는 데에서 발생합니다. 그것은 인터넷에서의 프라이버시를 위한 비지니스 모델이 아닙니다.” “사람들이 빅테크 제품들을 사용하는 것은, 그렇지 않고서는 사회에 참여하기 불가능하기 때문입니다. 하지만 그것은 사용자를 진정으로 얻은 것이 아닌, 강요입니다. 정부의 외면이나 독점으로 인해 다른 선택권이 존재하지 않는 상황에서의 “락인(lock-in)”인 것이죠. 지금처럼 절실하게 대안이 필요했던 적이 없습니다.” 🦜 더 읽어보기- 사진 내리기 말고 할 수 있는 일을 찾아서 (AI 윤리 레터, 2024-09-04)- 음란물은 딥페이크의 부작용이 아니라 순기능 (AI 윤리 레터, 2024-07-03)- 내년으로 들고 갈 질문 (AI 윤리 레터, 2023-12-06) 제목이 생각나지 않지만 자는 동안 뇌에서 프로세싱 될 거라 믿어요. by. 💂죠셉 일부 학부모님들이 사교육 등에 들어가는 투자와 그 결과로 나오는 시험 성적을 각각 ‘인풋’, ‘아웃풋'이란 단어를 사용해 표현한다는 걸 들은 적이 있습니다. 가만히 생각해 보면 사람을 대상으로 쓰기엔 이질감이 느껴지는 표현입니다. 기계와는 달리 사람의 경우 대부분 ‘인풋’만큼의 일정한 ‘아웃풋'을 예측하기가 어려우니까요. 우리의 일상에 들어와 있는 언어 중 이렇게 기계, 그중에서도 컴퓨터와 연관된 은유 (computational metaphors)가 매우 많습니다. 가령 몇 해 전 유행했던 ‘내 마음속에 저-장~’ 이 그렇죠. 기억을 소중하게 간직하겠다는 표현을 위해 ‘저장(store)’이라는 단어를 사용했습니다. 당연한 이야기지만, 우리는 ‘저장' 버튼을 눌러 데이터를 영구보존 하는 방식으로 기억을 저장할 수 없습니다. 어떤 기억을 보존할지, 혹은 지울지를 의식적으로 선택할 수도 없죠. 그럼에도 ‘저장'이란 표현은 컴퓨터를 한 번이라도 써본 사람은 모두 이해할 수 있는 효과적인 은유로 기능합니다. 여기에 더해 예능 자막에서 많이 사용되는 ‘입력 오류'라든지, 몇 해 전부터 갑자기 많은 사람들이 사용하고 있는 ‘알고리즘’ 같은 단어도 있죠. 당대의 주목 받는 신기술이 인간을 설명하기 위한 은유로 사용되는 건 역사적으로 반복되어 온 패턴입니다. 가령 철학자 르네 데카르트(René Descartes)는 인간의 뇌를 신경계와 연결된 유압 펌프에 빗대어 설명한 적이 있고, 심리학자인 지그문트 프로이트(Sigmund Freud) 또한 뇌를 일종의 증기 기관으로 상상한 적이 있습니다. 따라서 지금 우리의 언어에 컴퓨터 은유가 깊이 들어와 있고, 특히 인간의 뇌와 마음을 컴퓨터에 빗대어 이해하게 됐다는 게 그리 놀라운 사실은 아닐 겁니다. 그런데 뇌/마음을 컴퓨터로 이해한다는 게 정확하게 무슨 의미일까요? ‘마음/뇌 컴퓨터 은유의 대안을 찾아서 (In search for an alternative to the computer metaphor of the mind and brain)’라는 제목으로 다미앙 G.켈티-스테판(Damian G. Kelty-Stephen) 등 총 12명의 심리학자, 뇌과학자, 철학자 등이 발표한 논문 중 일부에 따르면 컴퓨터 은유는 일반적으로 다음과 같은 특징을 가집니다. 인풋-아웃풋 시스템: 뇌는 감각 정보(sensory input)를 처리해 특정 행동(behavioral output)을 결과로 출력한다. 코딩: 뇌에 인풋(감각 정보)이 입력되면 일차적으로 시스템을 위한 코딩 작업을 거친 후 뇌의 다양한 영역에서 처리(process)된다. 알고리즘: 뇌가 인풋을 처리해 아웃풋을 내는 방식은 제한된 규칙 집합의 순차적 적용(the sequential application of a limited set of rules)에 기반한 설명이 가능해야 한다. 즉, 컴퓨터 알고리즘처럼 설명할 수 있어야 한다. 어떠신가요? 우리가 생각하고 행동하는 방식에 완전히 부합하지 않는다는 걸 직관적으로 느끼셨을 겁니다. 위와 같은 과정에서 드러나는 기계의 완벽한 논리성과 합리성, 효율, 합목적성 등이 인간에게 적용되지 않는 경우가 많기 때문이죠. 그럼에도 컴퓨터 은유는 그동안 인간의 뇌와 마음을 연구하기 위한 최선의 대안으로 여겨져 왔고, 무엇보다 우리 인간이 스스로를 이해하는 방식 중 하나라는 점에서 중요한 의미를 가집니다. 앞서 언급한 ‘인풋/아웃풋'과 같은 표현은 일상 속 관용구처럼 사용되기에 그 의미가 얼핏 사소해 보일 수 있지만, 인간이 은연중에 자신의 뇌와 마음, 지능을 어디까지 기계로 인식하고 있는지를 드러내고 있기 때문이죠. 한편, 기술 평론가인 메건 오기블린(Meghan O’Gieblyn)은 “behavior,” “memory,” “thinking”등 한때 기계를 설명하는 데 사용하려면 따옴표로 구분될 필요가 있었던 단어들이 이제 AI 업계에서 흔하게 사용되고 있다는 점을 지적합니다. 챗GPT와 같은 언어 모델들이 학습(learn)한다거나, 이미지를 본다(see)거나, 이해한다(understand)는 표현 또한 이제는 쉽게 볼 수 있죠. 인간과 유사한 결과물을 내는 챗봇으로 인해 다양한 사건 사고가 벌어지고, 인간이 감정적으로 의존하게 되는 ‘중독성 지능(addictive intelligence)’에 대한 우려가 제기되는 상황에서 이러한 의인화 경향은 주목할 만합니다. 그리고 컴퓨터 은유에 대한 한 사회의 수용도는 이런 경향에 대한 척도가 될 수 있습니다. 물론 ‘알고리즘'과 같은 단어가 불과 몇 년 전까지만 해도 비전문가들의 어휘에는 존재하지 않았던 것처럼, 10년, 20년 후 컴퓨터 은유 또한 철지난 언어가 되어 있을지도 모르겠습니다. 일론 머스크의 꿈이 실현된다면 ‘우주여행 은유’를 사용하고 있을지도 모르죠. 앞서 소개한 논문에서는 현시점에서 컴퓨터 은유를 대체할 만한 여러 대안을 제시하고 있으니, 관심이 있다면 살펴보시기를 추천드려요. #feedback 오늘 이야기 어떠셨나요?여러분의 유머와 용기, 따뜻함이 담긴 생각을 자유롭게 남겨주세요.남겨주신 의견은 추려내어 다음 AI 윤리 레터에서 함께 나눕니다.
·
1
·
AI 분야에 영향력을 높여가는 이들
AI 윤리 뉴스 브리프 2024년 9월 둘째 주by 🎶소소 1. 2024년 AI 분야의 가장 영향력 있는 인물 100인 타임지가 AI 분야의 영향력 있는 100인을 발표했습니다. 구글, 마이크로소프트, 허깅페이스, 오픈AI 등 다양한 AI 관련 기업의 경영진이 다수 포함되었습니다. 올해 선정된 100인 중 91명은 작년 목록에 포함되지 않았던 인물이라고 하는데요. 정말 빠르게 변화하는 분야라는 것이 실감 납니다. AI 위험을 경고하고 해결하기 위해 노력하는 기업이나 기관의 인물들이 눈에 띕니다. 영국, 미국에 신설된 AI 안전 연구소를 이끄는 인물들도 등재되었습니다. 영국 공정거래위원회, 미국 상무부 장관과 과학기술부처의 정부 관료들도 이름을 올렸는데요. 작년부터 집중적으로 논의되고 있는 AI 규제를 만들고 실행하는 이들이 AI 기술개발에도 큰 영향을 미치고 있다는 점을 시사합니다. 100인의 인물을 살펴보며 알게 된 새로운 인물도 소개합니다. 미국 전역에서 딥페이크 피해자 보호 캠페인을 하는 열 다섯살의 프란체스카 마니(Francesca Mani)입니다. 마니는 반 친구들이 딥페이크를 사용해 자신을 포함한 여학생 친구들의 사진으로 성 착취적인 불법 합성물을 만들었다는 사실을 알게 된 이후 다시는 이런 일이 일어나지 않도록 전국의 정책 입안자, 학교 위원회, 기술 회사 앞에서 시위를 시작했다고 합니다. 그 외에도 흥미로운 인물들이 많이 있으니 한 번 살펴보는 것을 추천합니다. 💬 댓글- (🤖아침) 이런 종류의 목록이 발표되면 으레 갑론을박이 뒤따릅니다. 그중 기술 전문 저널리스트 브라이언 머천트의 의견이 눈에 띄었는데요. 머천트는 목록에 기업 CEO를 위시한 업계 거물이 대거 포진한 반면 팀닛 게브루, 에밀리 벤더, 조이 부올람위니, 테드 창, 메러디스 휘태커 등 비판적 목소리를 높여온 인물들이 작년과 달리 올해는 빠진 점에 주목합니다(리나 칸, 사샤 루치오니, 벤 자오 등이 그 자리를 대신하고 있긴 하지만요). 그리고 이 목록이 잘못되었다기보다, 오히려 너무나도 현실을 정확하게 드러낸다고 꼬집습니다. AI는 부자들이, 부자들을 위해, 노동을 자동화하여 기업의 이윤을 극대화하고자 만드는 기술이라는 것이죠. 2. AI 기업이 쓸어 담는 수조 원의 투자금 오픈AI가 수십억 달러 규모의 자금을 조달하기 위한 투자 유치 중이라고합니다. 현재 기업가치를 1000억달러(약 134조원) 규모로 추정하는데요. 엔비디아가 투자자로 참여한다거나, 비영리를 표방한 투자금의 100배 수익 제한 기업(capped for profit) 구조마저도 포기한다는 여러 소문이 무성합니다. 오픈AI의 주간사용자가 2억명을 돌파했다는데, 여전히 막대한 투자금이 필요하다는 것은 모델 개발에 끊임없이 돈이 들어간다는 뜻이겠죠. 오픈AI의 방향성에 반대하며 사임한 일리야 수츠케버(Ilya Sutskever) 또한 최근 막대한 투자금을 조달했습니다. 그가 창업한 Safe Superintelligence(SSI)가 설립 3개월 만에 10억 달러(약 1조 3,000억 원)의 투자를 받았다는 소식입니다. 어떤 기술을 개발하는지는 아직 구체적으로 알려지지 않았으나, 일리야 수츠케버를 믿고 대규모의 투자가 진행된 것으로 보입니다. SSI 측은 안전한 초지능을 만드는 것을 목표로 제품을 시장에 출시하기 전에 몇 년 동안은 연구 개발에 투자할 것이라고 밝혔습니다. 도대체 이 AI 기업들은 이 돈을 다 어디에 쓸까요? 아마 많은 돈이 컴퓨팅 자원을 확보하는 데 쓰일 것으로 보이는데요. 불확실한 AI의 미래에 너무 많은 인간의 자원이 투입되고 있지는 않은지 우려됩니다. 더 좋은 AI를 만든다는 명목으로 끊임없이 돌아가는 컴퓨팅 연산이 우리의 미래에도 의미 있는 연산이기를 바랍니다. 3. 대한민국 AI 기본법 불발, 국경을 넘는 AI 국제 조약 각 국에서 AI 규제를 위한 여러 법안이 제출되고 있습니다. 이 중에는 합의되는 법안도 있지만 불발되는 법안도 다수입니다. 우리나라 22대 국회에 재제출된 AI 기본법은 법안심사소위원회를 통과하지 못했습니다. 최근 딥페이크를 이용한 성착취물 실태가 영향을 미친 것으로 보입니다. AI가 악용되는 경우를 규제할만한 방안이 부족하다는 평가인데요. AI 부작용을 막기 위한 실질적인 대책으로서의 법안이 요구되고 있습니다. 한편 국경을 넘어 AI 기술의 위험 통제와 책임을 요구하는 AI 국제 조약에 미국, 영국, 유럽연합을 포함한 10개국이 서명했습니다. 정식 명칭은 “AI와 인권, 민주주의 및 법치에 관한 기본 협약” 입니다. 5개 서명국이 본 조약을 자국 법률에 따라 비준하면, 3개월 후 발효됩니다. 이 조약은 유럽 AI 법이 유럽 지역에만 적용되는 한계를 보완한다는 의미가 있습니다. 그러나 구체적인 벌금 등 제약사항이 없다는 점에서 실효성에는 의문이 제기되고 있습니다. 미국도 연방정부 차원의 AI 법은 없으나, 미국 AI 안전 연구소는 오픈AI와 앤트로픽의 AI 모델 사전 테스트 권한을 확보했다고 밝혔습니다. AI 모델 출시 전 모델의 성능과 위험을 평가한다는 취지입니다. 앞으로 정부가 직접 AI 모델을 평가할 수 있는 역량이 규제의 핵심이 될 것으로 보입니다. 4. 딥페이크 성착취물 반대 행진 전국 144개 시민사회 단체가 주최한 텔레그램 딥페이크 성폭력 대응 긴급 집회에 시민 500여 명이 참여했습니다. 보신각 앞에 모인 참석자들은 “불안과 두려움 아닌 일상을 쟁취하자!”는 구호를 외치며 행진했습니다. 정부가 범죄자들을 강력하게 처벌하고 플랫폼이 적극 대응하기를 촉구하는 마음이 전해졌길 바랍니다. 한국의 딥페이크 성착취물 실태가 전세계적으로 알려지면서, 세계의 많은 여성들도 함께 분노하고 있습니다. 영국의 한국대사관 앞에서는 한·중·일 동아시아 여성을 비롯해 세계 각국 출신의 100여명이 불법촬영물, 여성혐오문화 반대를 외치고 딥페이크 성범죄 사태 해결을 촉구하며 행진했습니다. 이번주 수요일(2024년 9월 11일)🦜AI 윤리 레터도 딥페이크 성범죄 이슈에 관해 이야기하는 자리를 사회적협동조합 빠띠와 함께 마련했습니다. 매일 끊임없이 쏟아져 나오는 뉴스를 보며 쌓이는 분노의 에너지를 문제 해결의 에너지로 바꿔내고 싶은 분들을 초대합니다. 직접 문제해결을 위한 캠페인을 만들고 실행해보는 워크숍 시간으로 준비했습니다. 다양한 분을 만나뵙고 말씀 나누길 기대합니다. 📆 소식- 딥페이크 성범죄, 우리가 함께 할 수 있는 일을 찾아서(feat.캠페이너 인생게임)주최: 사회적협동조합 빠띠 & AI 윤리 레터(행사일: 2024-09-11) #feedback 오늘 이야기 어떠셨나요?여러분의 유머와 용기, 따뜻함이 담긴 생각을 자유롭게 남겨주세요.남겨주신 의견은 추려내어 다음 AI 윤리 레터에서 함께 나눕니다.
·
5
·
기술의 구원을 기다릴 때 소홀해지는 것
기술의 구원을 기다릴 때 소홀해지는 것 by 🤖아침 이런 이야기가 있습니다. 이웃집에 사는 경계선 지능인 청년이 나쁜 사람의 꼬임에 속아 넘어가 보이스 피싱에 연루될 뻔합니다. 가게 장사를 하는 부모님은 자식의 움직임을 항시 살필 형편이 안 되어 절망하던 차, 글쓴이가 챗지피티 커스텀 봇을 제작해 사용법을 알려줍니다. 일상생활에 어려움을 겪는 청년으로 하여금 생활 속 각종 상황에 대한 조언을 해주는 봇에게 이것저것 물어보고 결정하도록 한 것입니다. 덕분에 해당 청년의 삶은 한결 안전해졌다는 미담입니다. 저는 이 이야기를 자주 생각합니다. 흥미롭고 찜찜한 이야기입니다. 온라인 커뮤니티발 썰이므로 어디까지 사실인지는 확인이 어렵지만 제 관심을 끄는 건 사실 여부보다, 여기 담겨 있는 관점과 가치관입니다. 기술에 대한 어떤 종류의 기대를 잘 보여주는 이야기랄까요. 무엇보다 이것은 기술로 장애를 해결하는 이야기입니다. 일상의 판단에서 어려움을 겪는 사람이 있고, 판단을 보조하는 기술적 도구를 제공하여 그 어려움을 해소합니다. 챗지피티 같은 LLM 기반 서비스가 일상생활을 실제로 잘 보조해줄 수 있는지 정확한 평가가 필요하겠지만, 그 평가는 잠시 유보하겠습니다. 제대로 보조해줄 수 있다고 일단 가정합시다. 이야기 속 경계선 지능인 청년은 전자레인지에 페트병을 넣고 돌려도 되는지 같은 일상적 판단에 있어 챗봇에 의존하게 됩니다. 이때 챗봇은 청년과 세계 사이를 매개하며, 청년은 자신의 판단을 챗봇이라는 기술 시스템에 외주화합니다. 기술 시스템에 판단을 맡기는 것 자체로 나쁜 일은 아닙니다. 우리 모두는 AI뿐만 아니라 다양한 기술 시스템을 매개로 세계와 상호작용하고 그 과정에서 자신의 행동이나 판단을 외부 시스템에 맡깁니다. 코파일럿을 사용하는 프로그래머, 기계번역을 사용하는 저자, AI 생성 일러스트레이션을 활용하는 디자이너 모두 마찬가지죠. 검색엔진이나 쇼핑몰의 추천 알고리즘도 수많은 정보의 우선순위를 우리 대신 판단해주는 도구이며, 우리는 그 판단을 편리하게 받아들이곤 합니다. 도구를 사용해 편익을 누릴 수 있다면 무엇이 문제냐고 생각하는 이도 분명 있을 겁니다. 하지만 일상의 판단을 전부 도구에 위임하는 게 괜찮은 걸까요? 경계선 지능인이나 지적장애인의 삶은 그렇게 해도 괜찮나요? 다른 종류의 장애를 가진 사람이나, 마찬가지로 일상적 판단이 어려운 아동의 삶은 어떤가요? 이 글을 읽는 당신의 삶을 통째로 챗지피티에 위임할 수 있나요? 전부가 아니라 일부라고 한다면 어디까지 괜찮은가요? 괜찮은 것과 괜찮지 않은 것의 경계는 어디인가요? 개인과 기술 도구의 적절한 관계에 관한 까다로운 질문은 이야기 속 화자의 역할로 인해 한층 복잡해집니다. (아마도 비장애인일) 글쓴이는 경계선 지능인 청년에게, 청년 자신보다 AI 챗봇을 믿고 행동하라고 권합니다. 그리하여 글쓴이는 청년과 부모님의 문제를 해결해주고, "GPT가 사람 하나 매시간으로 구하고 있는" 것을 보며 기뻐합니다. 이 지점에서 우리가 사회적으로 기술과 맺는 관계가 드러납니다. 이야기 속 한국 사회는 경계선 지능인 청년이 역량을 기르거나 발휘할 만한 기회가 부족하고("편의점 알바랑 부모님 가게일만 하는"), 보이스 피싱과 같은 범죄의 위험이 취약계층에게 더욱 크게 작용하며, 일상을 안전하게 영위하게 해주는 돌봄 체계가 부재합니다("항상 옆에 두지도 못하는데 앞으로 어떻게 해야하냐"). 경제, 치안, 복지 등 여러 사회적 맥락에서 해당 청년은 구조적 어려움에 처해 있는 것이죠. 훈훈한 결말부에 닿았을 때, 이러한 사회적 조건 중 달라진 것은 아무것도 없습니다. 여전히 청년과 같은 이들에게 한국은 경제적 자립이 요원하고 범죄에 취약하며 돌봄을 기대하기 힘든 곳입니다. 유일하게 달라진 것은 청년이 챗봇을 활용한다는 사실입니다. 기술 시스템이 경계선 지능인 개인의 삶에 등장함으로써 문제가 갑자기 없어지거나 완화됩니다. 다른 어떤 것도 바꾸지 않은 채 기술을 추가함으로써 긍정적인 효과만 얻은 것이죠. 구원으로서의 기술. 전형적인 기술 만능주의(techno-solutionism)가 드러나는 지점입니다. 기술 만능주의는 매혹적입니다. 이야기에서 청년의 문제는 기술로 해결되었고, 심지어 그 해결 주체는 어떤 거대한 조직이 아니라 글쓴이 개인이었죠. 청년에게 일자리를 제공해주거나, 다른 일을 할 수 있는 역량을 길러주거나, 금융 사기범의 활동을 제한하거나, 돌봄 지원 체계를 개선하는 것은 쉽지 않습니다. 개인 혼자의 힘으로는 어려운 일이죠. 하지만 기술이 문제를 해결해줄 수만 있다면, 복잡한 사회적 상황을 건드리지 않고도 세상은 나아집니다. 즉 이야기 속 챗봇은 일종의 도깨비 방망이, 마법처럼 문제를 해결해주는 데우스 엑스 마키나입니다. 경계선 지능인 청년의 판단 능력을 키우고, 더 나은 일자리를 만들고, 사람과 자원을 투자해 돌봄 안전망을 설계하지 않아도, 당사자가 챗봇을 활용하면 그럴 필요가 없어집니다. 챗봇은 보호자가 자식을 돌볼 수 있는 시간을 확보해주는 대신, 자식을 돌보지 않고 계속 돈을 벌 수 있도록 해줍니다. 청년이 처한 사회적 관계와 조건을 개선하기보다, 그 관계와 조건을 챗봇으로 대신할 수 있을 뿐만 아니라 대신하는 것이 사실상 바람직하다는 믿음. 이때 챗봇은 기존의 사회적인 문제를 고통스럽게 마주하고 구조적 개선을 추구하는 일을 하지 않아도 되게 해주는 면책 수단이 됩니다. 그러므로 이러한 기술적 해결의 추구는 어떤 의미에서는 사회적 관계맺기나 공동체적인 돌봄을 포기하는 일이며, 그런 의미에서 가치판단(예컨대 돌봄 지원 확대보다 챗봇 솔루션 보급을 중시하는)이 들어간 정치적 선택이 됩니다. 기술적 해결의 추구가 사회적 해결의 포기라는 말이 너무 극단적인가요? 그럴지도 모릅니다. 위 이야기의 글쓴이가 챗봇을 만들어주면서 다른 종류의 돌봄이 필요없다고 주장한 건 아니니까요. 기술적 실천과 사회적 노력이 잘 어우러지는 것이 최선일 겁니다. 또한 사회적 자원의 확보가 쉽지 않은 조건에서 기술적 개입이 긍정적 효과를 가져올 수 있다면 당연히 후자가 바람직한 것일지도 모릅니다. 돌봄이 필요하니까 챗봇으로 돌봄 기능을 제공한다는 것이고, 그런 도구를 활용하는 게 바로 일상생활 역량이라고 볼 수도 있겠지요. 다만 그러기 위해서는 기술적 해결책이 실제로 도움이 되는지, 새로운 문제를 만들어내지는 않는지 면밀히 따져봐야 하겠습니다. 더구나 챗봇 같은 기술 도구가 다른 사회적 투자, 예컨대 돌봄 지원을 축소하는 명분이 되지 않는지도 경계할 필요가 있습니다. 그렇지 않다면 장애를 기술로 해결한다는 낙관을 믿으며 정작 현실에는 눈감는 테크노-에이블리즘의 혐의에서 자유로울 수 없겠죠. 도입부에서 일단 받아들인 ‘챗봇이 일상 판단을 잘 보조해줄 수 있다’라는 전제를 거두어들이고, 잠시 유보해둔 평가를 재개해야 하는 시점입니다. 챗지피티 등 주요 LLM 기반 챗봇 서비스는 가입시 연령제한이 걸려 있습니다. LLM 기술은 본질적으로 부정확한 텍스트 생성 가능성을 배제할 수 없고, 혐오나 특정 집단에 대한 편견 등 부적절한 결과물을 내놓을 수도 있기에 미성년 이용자에게는 위험하다고 보는 것이죠. 이런 한계를 지닌 도구를 일상 생활 속 판단에 활용하는 일은, 그 도구가 내놓은 부정확한 결과를 그대로 받아들일 위험을 일상에 도입합니다. 따라서 도구에 대한 비판적 검토 역량, 기술에 내재된 의도와 편향을 파악하고 그에 맞추어 적절한 관계를 맺을 수 있는 능력이 필요합니다. AI 리터러시라고 부를 수 있는 이러한 역량을 확보하지 않은 채 기술을 보급하는 것은 이용자에게 위험을 초래합니다. 이야기 속 경계선 지능인 청년이 챗봇의 잘못된 조언을 받아들여 위험한 행동을 하게 된다면 그 상황은 누가 책임질 수 있을까요? 서비스나 기기에 문제가 생겨 챗봇이 작동하지 않는다면 청년은 어떻게 해야 할까요. 그런 상황에서 의존할 수 있는 다른 안전망은 남아 있을까요? 기술에 건 기대가 반드시 긍정적 결과로 되돌아오는 건 아닙니다. 그리고 기대가 어긋날 때 피해는 약자가 더 많이 입게 마련이고요. 위 이야기는 그냥 커뮤니티 썰이지만, 실제로 복지/의료 분야에 챗봇 등 AI 기술을 도입하는 사례가 많아지고 있습니다. 기술이 다 해결해줄 거라는 낙관을 잠시 거두고 실제로 가능한 일이 무엇인지, 기술에 대한 기대가 차단하는 다른 가능성은 무엇이지 면밀히 관심을 가져야 할 시점입니다. #feedback 오늘 이야기 어떠셨나요?여러분의 유머와 용기, 따뜻함이 담긴 생각을 자유롭게 남겨주세요.남겨주신 의견은 추려내어 다음 AI 윤리 레터에서 함께 나눕니다.
·
4
·
사진 내리기 말고 할 수 있는 일을 찾아서
사진 내리기 말고 할 수 있는 일: AI 기업에 요구하기 by 🎶소소 딥페이크 성범죄 영상물을 제작, 소지, 배포하는 행위는 개인의 존엄성과 인격권을 파괴하는 중대한 범죄입니다. 딥페이크가 아니라 불법 합성물이라고 부르겠습니다. 일부 대학에서 드러났던 불법 합성물 성범죄 사건이 사실상 사회 곳곳에서 일어나고 있으며, 내가 사는 지역과 다니는 학교의 지인들이 중심이 되었다는 충격적인 보도 이후 논의가 계속되고 있습니다. 현재까지 경찰에 신고된 피해자 대부분은 10대 20대로, 피의자 중 다수는 피해자와 같은 학교 학생이라는 점은 많은 이들을 경악하게 합니다. 경찰과 검찰은 불법 합성물 성범죄 관련 행위를 신종 학교 폭력으로 규정하고 엄정 대응 방침을 발표했습니다. 방송통신심의회도 불법 합성 성착취물에 강력 대응하겠다고 밝혔습니다. 여성가족부 또한 경찰과 연계해 피해자 영상물 삭제를 지원하겠다고 했고요. 윤석열 대통령은 딥페이크 없는 건강한 온라인 환경을 만들 것을 촉구했습니다. 언론중재위원회는 성적 딥페이크 콘텐츠를 삭제하고 차단하기 위해 소셜미디어 기업과의 소통을 강화하는 협의체를 구성할 계획이라고 밝혔습니다. 네, 다 좋습니다. 정부 기관에서 약속한 대로 빠르게 엄정하게 대응해주셨으면 합니다. 그동안 우리는 뭘 할 수 있을까요? 학교에서는 딥페이크 예방을 위해 가정통신문을 보냈습니다. 유의사항에는 “SNS 계정에 연락처, 사진 등 개인정보를 공개하는 것을 주의”하라고 적혀있습니다. 많은 아이들이 혹시나 하는 마음에 모든 SNS에서 사진을 삭제하고도 밤새 스마트폰을 붙잡고 불안해한다고 합니다. 가정통신문에는 우리가 당장 할 수 있는, 뭐라도 해야 하는 마음이 담겼겠지요. 그런데 도대체 피해자들이 얼마나 더 주의를 해야 할까요? 미니스커트를 입으면 성적 호기심을 유발할 수 있으니 입지 말라는 역사가 반복되는 느낌입니다. 이러다가 모두가 히잡을 두르다 못해 눈코입까지 가려야 할 판입니다. SNS에서 사진 내리기 말고 우리가 더 할 수 있는 일은 없을까요? 불법 합성물이 제작되고 유포되는 과정을 그려보았습니다. 전체 과정에서 피해자가 한 일은 개인 SNS에 사진을 올린 것 뿐입니다. 그 이후로는 여러 이해관계자가 따로 또 같이 범죄를 위해 움직입니다. 피해자의 사진을 도용해서 불법 합성물 제작을 시도한 사람이 시작점입니다. 불법 합성물을 제작해주는 익명 채널에 참여한 22만명은 모두 잠재적 범죄자입니다. 의뢰자 스스로가 딥페이크 제작자이거나, 제작자가 SNS 범죄방 운영자이자 유포자일 때도 있습니다. 모두 범죄에 가담한 가해자입니다. 이 과정에는 개인이 아닌 “기업”의 역할도 있습니다. SNS 플랫폼 기업은 범죄의 유통책이 되고, 딥페이크 서비스 기업은 불법 합성물 제작에 활용됩니다. 불법 합성 성착취물의 유통 채널인 SNS를 통제할 수 있을까요? 국내에서는 많은 불법 합성물들이 텔레그램을 통해 유포됩니다. 표현의 자유를 보호하기 위한 텔레그램의 강력한 운영 방침이 역설적으로 범죄 집단들이 범행을 모의하는 공간을 만들어주고 있습니다. 딥페이크 뿐만 아니라 사기, 마약, 밀매, 테러 조장 등 범죄 온상이 되고 있습니다. 텔레그램이 수사에 협조하지 않아 수사가 어렵다는 이야기를 한 번쯤 들어보셨을 텐데요. 최근 프랑스에서 텔레그램 CEO이 체포되며 대한 아동 성착취물(Child Sexual abuse material, CSAM) 및 기타 범죄와 관련된 조사가 시작되었습니다. 이 때문인지 텔레그램이 방송통신심의위원회가 긴급 삭제 요청한 디지털 성범죄 영상물 25건을 삭제하고 사과했습니다. 앞으로 딥페이크 성착취물 문제를 위해 노력하겠다고 밝혔습니다. 유통 채널만의 문제는 아닙니다. AI가 불법 합성물을 더욱 쉽고 빠르게 만들어주는 덕분에 피해 범위는 더욱 커지고 있습니다. AI 기술에 익숙한 사람이라면 오픈 소스로 공개된 AI 모델을 직접 내려받아 사용할 수 있습니다. 기술은 전혀 모르더라도 조금만 검색해보면 딥페이크 서비스로 쉽게 얼굴을 합성할 수 있습니다. 얼굴 합성에 쓰이는 AI는 오래된 기술입니다. 기술이 발달한 환경에서 10대 청소년에게 딥페이크는 아주 오래된 보통의 장난이 되었습니다. 여기에 생성AI가 더해지며 더 빠르고 좋은 품질의 이미지가 쉽게 만들어지고 있습니다. 최고의 성능을 경쟁하는 AI 얼굴 합성 프로그램도 검색만 하면 수십 개가 쏟아집니다. 사진 한 장만 있으면 사진뿐만 아니라 영상까지도 수십 초 내로 합성할 수 있습니다. 일부 서비스는 무료이고, 대부분이 월 4.99$(약 7000원) 정도면 제한 없이 서비스를 이용할 수 있습니다. 창작을 민주화한다는 아름다운 구호 아래 AI는 범죄를 돕는 쉽고 빠르고 성능 좋은 도구가 되고 있습니다. 영국 비영리 단체 IWF(Internet Watch Foundation) 은 한 달 간 온라인에 게시 된 11,000개 이상의 AI 생성 이미지를 분석한 결과 3,000개 이상의 이미지가 범죄로 분류될 만큼 심각하다고 판단했습니다. 그러나 대부분의 생성AI 이미지 서비스에서 윤리 정책이나 안전 장치는 전혀 찾아볼 수 없었습니다. 일부 빅테크를 제외한 딥페이크 서비스들은 스타트업 규모로 경쟁에서 살아남기 위해 고군분투하고 있기 때문입니다. 그동안 범죄자는 쉽고 빠르게 범죄를 저지르는데 AI를 이용하고 있습니다. 우리는 딥페이크 관련 기업에도 이러한 피해를 예방하기 위한 조치를 취하도록 요구해야합니다. AI 학습 데이터셋 구축 기업이나 모델 개발사도 마찬가지입니다. 수십억 개의 이미지 공개 데이터셋인 LAION-5B에는 유명 포르노 사이트를 포함한 다양한 소스에서 스크랩 된 아동 성착취물이 포함되어있습니다. 이 때문에 미국과 캐나다에서는 이 공개 데이터셋의 삭제를 요청해왔고요. 이러한 요청에 며칠 전 LAION 팀에서는 아동 성착취물 데이터를 제거한(2천여 건 삭제) 버전을 발표했습니다. 최근 허깅페이스에서는 이미지 생성 AI 모델인 Stable Diffusion ver 1.5 모델이 삭제되었습니다. 이 모델은 아동 성착취물 생성에 뛰어나다고 알려졌습니다. 아동 성착취물이 포함된 데이터셋(LAION-5B)를 학습했기 때문인데요. 그 덕분인지 이 모델은 600만 회 이상 다운로드 된 인기 모델 중 하나였습니다. 그런데 이 모델은 부적절한 이미지 생성의 온상이라는 여러 지적에 따라 최근 모델 호스팅 사이트인 허깅페이스에서 제거된 것입니다. AI 기업은 AI 모델과 서비스를 안전하게 개발, 배포 및 유지 관리할 책임이 있습니다. 그리고 사용자는 계속해서 이를 요구해야 합니다. 아래 우리가 AI 기업에 요구할 수 있는 안전 장치로 아동 안전을 위한 비영리 단체 Thorn이 제안하는 몇 가지를 덧붙입니다. 생성 AI 모델 학습 전 데이터셋 내 아동 성착취물을 탐지, 제거 후 보고 생성된 이미지의 워터마크 및 콘텐츠 출처 표기 아동 성착취물을 데이터로 학습했거나, 재생성할 수 있는 모든 생성 AI 모델을 플랫폼에서 제거 아동 성착취물을 데이터셋에서 제거하지 않는 모델의 재호스팅을 거부 아동 성착취물 생성을 의도적으로 미세 조정된 모델을 식별하여 해당 플랫폼에서 영구히 제거 앱 스토어에서 관련 도구 승인을 거부하고, 검색 결과 및 결제 차단 딥페이크 탐지, AI 생성 콘텐츠 내 워터마크 삽입 등의 기술적 조치 역시 관심을 받고 있습니다. 물론 이러한 기술적인 조치가 문제의 완전한 해결책이 될 수는 없다는 것을 우리는 압니다. 성적 콘텐츠를 소비하고 공유하는 과정의 범죄는 한국 사회의 젠더 갈등과 성차별 문화와 관련이 있습니다. 대통령을 포함한 정부 기관이 범죄에 엄정 대응을 외치지만, 이 사회에 존재하는 여성에 대한 구조적 차별 문제는 언급하지 않습니다. 당사자들은 불법 합성물 성범죄를 방치하는 이 사회의 구조적 문제를 이야기하려면 밤을 새울 지경인데도요. 네, 그래도 좋으니 더는 범죄를 장난이나 실수나 호기심이라며 봐주거나 용인해서는 안 됩니다. 엄중한 처벌이 차별적인 사회 구조에 균열을 낼 수 있기를 바랍니다. 🦜더 읽어보기- 음란물은 딥페이크의 부작용이 아니라 순기능(2024-07-03)- 텔레그램 성착취방의 톱니바퀴, AI(2024-08-26)- 생성 AI 성착취물 시장의 구조(2023-09-04) #feedback 오늘 이야기 어떠셨나요?여러분의 유머와 용기, 따뜻함이 담긴 생각을 자유롭게 남겨주세요.남겨주신 의견은 추려내어 다음 AI 윤리 레터에서 함께 나눕니다.
·
4
·
딥페이크 성착취물 논의, 어디로 흘러가는가
AI 윤리 뉴스 브리프 2024년 9월 첫째 주by 🤔어쪈 1. 딥페이크 성착취물 논의, 어디로 흘러가는가 지난주 AI 윤리 레터에서 소개한 딥페이크 성착취물 보도가 큰 반향을 일으키며 후속 논의가 한창입니다. 이 문제는 사실 이미 수차례 일어난 바 있고, 분명 우리는 더 크게 터질 것을 알고 있었습니다. 일종의 산업이라고 해도 될 만큼 규모와 체계를 갖춰나가는 모습도 경악스럽지만, 충분히 예견 가능한 일이었기에 어쩌면 그 시장의 주된 참여자와 피해자 모두 학생이라는 점 때문에 더 큰 반향을 불러일으킨 것은 아닐까 짐작해 봅니다. 지역자치단체와 정부 부처는 즉각적인 대응을 위한 피해 신고와 삭제 조치에 노력을 기울이기 시작했고, 경찰과 검찰 양 수사기관 모두 엄정한 단속과 수사, 처벌을 약속했습니다. 정치권 역시 여야를 불문하고 관련 처벌 규정을 강화하는 등의 법제도 마련 움직임을 보이고 있습니다. 텔레그램과 같은 성착취물 유통 채널이 될 수 있는 플랫폼에 대한 규제를 요구하는 목소리도 커지고 있고, 다른 한편으로는 딥페이크 탐지, AI 생성 콘텐츠 내 워터마크 삽입 등의 기술적 조치 역시 관심을 받고 있습니다. 다층적이고 복합적인 문제인만큼 관련 범죄를 근절하기 위한 다각적이고 단계적인 노력이 필요한 상황입니다. 하지만 그 과정에서 우리가 잊지 말아야 할 것은 레터에서 지적했듯 딥페이크 성착취물이 그저 AI 기술을 악용하는 일부에 의한 역효과 내지는 부작용이 아니라는 점입니다. AI 기술은 분명 이러한 문제가 보다 쉽게 발생하고 만연해지는 방향으로 발전하고 있습니다. 그럼에도 불구하고 벌써부터 불안 과장, 과잉 규제 운운하는 사람들의 목소리는 범죄 방조와 다를 바 없다고 봐야하지 않을까요? 2. 초지능 AI 규제 법안과 AI 하이프의 상관관계 지난 반년간 AI 업계에 뜨거운 논쟁을 불러일으킨 미국 캘리포니아주의 한 법안이 의회를 통과하여 주지사 서명만을 남겨두고 있습니다. 정식 명칭은 ‘프론티어 인공지능 모델법 (Frontier AI Model Act, 이하 SB1047)’으로, 일정 규모 이상의 AI 모델 개발자로 하여금 모델 학습 전 ‘비상 정지’ 기능을 도입하고 안전성 시험을 통과해야만 배포를 할 수 있도록 하는 등 미국 내 상대적으로 강력한 규제를 담고 있는 것으로 평가받고 있습니다. 법안을 둘러싼 논의를 들여다보면, 과도한 규제가 빅테크 뿐만 아니라 스타트업과 오픈소스 등에서 일어나는 혁신을 저해한다는 전형적인 비판을 넘어 생각해볼만한 논쟁 지점들이 있습니다. SB 1407이 주목하는 위험은 AI가 대량살상무기를 만들거나, 핵심 기반시설에 대한 사이버공격을 가하는 상황 등에 해당합니다. 이를 방지하기 위한 노력이 불필요하진 않겠지만 얼마나 현실적인지 의문을 제기해볼 수 있겠죠. 또한 다목적·다용도의 AI 모델에 대한 규제가 이를 활용하는 자에게 적용되어야 하는지, 아니면 AI 모델 개발자에게 적용되어야 하는지 역시 쉽게 답을 내리기 어려운 질문입니다. SB 1047의 내용은 분명 그간 초지능이 가져올 위험을 강조해 온 AI 하이프의 영향을 크게 받은 것으로 보입니다. 이러한 법안이 AI로 인해 이미 발생중인 피해를 경감하거나 방지하는 다른 어떠한 규제보다 가장 빠르게 초당적 지지를 얻었다는 점은 못내 씁쓸한 부분입니다. 하지만 앞서 던진 질문들과 더불어 AI 하이프에 열심히 바람을 불어넣고 규제가 필요하다던 기업들이 돌아서서 반대하는 목소리를 내는 모순적인 모습과 그들의 반대에도 불구하고 입법을 추진하는 주 의회의 추진력 등은 우리에게 많은 생각할 거리를 던져줍니다. 3. AI 교과서 사업이 참고해야 할 LA의 오답노트 정부가 AI 디지털교과서 사업을 계속해서 강행 추진하는만큼 역풍도 거세게 불고 있습니다. 사업 유보를 요구하는 국회 국민동의청원 참여인원이 5만명을 넘어 교육위원회에 회부되었고, 정기국회 및 국정감사를 앞두고 ‘AI 디지털교과서 중단 공동대책위원회 (이하 공대위)’가 출범하여 국회에 청문회 개최를 요구하고 있습니다. 레터에서 여러 차례 다뤘던 AI 디지털교과서의 검증되지 않은 효과성, 학생과 교사 개인정보를 포함한 교실 데이터 수집과 활용의 적절성 등이 주된 우려입니다. 한편 미국에서 두번째로 큰 공교육 관할 구역인 로스앤젤레스(LA)에서도 우리나라 AI 디지털교과서와 매우 유사한 프로그램을 도입했다가 곤혹을 치르고 있다는 소식입니다. 지난 3월 LA 통합교육구는 AI 학습 플랫폼 에드(Ed) 출범을 알리며 한국 교육부가 AI 디지털교과서 사업 추진 근거로 언급했던 것과 거의 동일한 내용을 내세웠습니다. 하지만 에드 개발을 담당한 스타트업이 수개월만에 파산하고, 데이터 유출 및 부적절한 활용에 대한 논란이 일며 모든 장점이 무색해지고 말았습니다. 약속했던 기능들 역시 제대로 구현되지 않았거나 그다지 효과가 없다는 지적입니다. LA 사례는 공대위에서 제기하는 문제들이 단순 기우가 아니라 매우 현실적인 지적임을 보여줍니다. AI가 개인화된 교육 콘텐츠를 제공하는 등 교육 일선의 문제들을 단번에 해결하는 마법의 단어처럼 여겨지곤 하지만 그런 건 각종 AI 과장 광고에서나 주장할 법한 이상적인 일입니다. 단순히 신기술 도입만으로 해결되는 문제는 하나도 없습니다. 중요한 것은 AI 기술이 아니라 교육 현장의 학생, 교사, 학부모와 같은 사람들과 교육이라는 제도 그 자체입니다. 4. AI 법이 있지만 시행까진 시간이 남아서 지난달 EU AI 법이 발효되어 조항에 따라 내년 또는 내후년 시행을 앞두고 있습니다. 최초로 AI 전 분야를 포괄하는 법안인 만큼 그 내용을 어떻게 해석할지, 또 법규 준수를 위해 무엇이 필요한지 적잖은 혼란이 예상되고 있죠. 이러한 우려를 반영하여 EU는 AI 법 적용을 준비하기 위한 자율적인 협정인 AI Pact를 준비하고 있습니다. AI Pact는 AI 개발 기업 등 법 적용 대상이 제도 이행을 준비할 수 있도록 실천 사례 등을 공유하는 네트워크를 구축하고, 이를 토대로 법적 요구 사항을 충족하는 각종 실천에 대한 자율 규제를 이끌어내는 것에 초점을 맞춥니다. 조직의 AI 거버넌스, AI 리터러시 촉진 전략 등 경영 차원의 내용부터 합법적인 AI 학습 데이터 확보 방안, AI 시스템에 대한 인적 감독 메커니즘 등 실무적인 내용까지 폭넓은 항목을 담고 있습니다. EU는 AI Pact 참여 기업을 계속해서 늘리기 위해 노력중입니다. 아직 그 목록이 공개되진 않았지만 최근 독일의 대표적인 AI 기업 알레프 알파(Aleph Alpha)가 투명성과 법률 준수를 내세운 모델을 출시한 것이 이러한 노력의 일환인 것으로 보입니다. 이러한 움직임은 입법 논의를 미루기만 하고 있는 우리나라에서도 참고해볼 수 있지 않을까요? #feedback 오늘 이야기 어떠셨나요?여러분의 유머와 용기, 따뜻함이 담긴 생각을 자유롭게 남겨주세요.남겨주신 의견은 추려내어 다음 AI 윤리 레터에서 함께 나눕니다.
·
2
·
가상과 현실의 간극 줄이기
가상과 현실의 간극 줄이기: 로봇학습 데이터 수집 by 🧙‍♂️텍스 최근 들어 AI 하이프(hype)는 슬슬 로봇 하이프로 옮겨가는 듯 보입니다. 이번 주 기사들은 테슬라가 휴머노이드 로봇 옵티머스를 개발하기 위해 모션 캡처와 VR 기술을 활용하여 인간의 행동 데이터를 수집하는 직군을 채용하는 사실을 다루었습니다. 테슬라뿐만 아니라 여러 기업이 실제 현실에서 인간의 작업을 대체하는 인공지능 로봇을 만들겠다고 주장합니다. 회사들의 일방적인 주장은 기사 형태로 그대로 공유됩니다. 정말 인공지능 로봇은 우리의 삶에 빠르게 등장할까요? 현실 세상에서 로봇을 작동시키려면 많은 고려를 해야합니다. 로봇은 로봇 자신의 행동을 통제하고, 로봇을 둘러싼 환경을 이해해야하고, 목적에 따라 자기 행동을 계획할 수 있어야 합니다. 고전적인 로봇은 이를 모두 수학과 물리 문제로 정리하여 해결하였고 이를 통해 정교한 조작이 가능함을 보여주었습니다. 하지만 고전 방법론의 경우 현실 세계에 존재하는 약간의 불확실성에도 대응하기 어렵기에, 불확실성이 가득 찬 공장 혹은 물류창고 밖에서 로봇을 작동시키기는 어려운 점이 많았습니다. 근 10년간 기계학습 (Machine Learning) 분야의 발전은 현실의 불확실성에 대응할 수 있는 인식 (Recognition) 능력을 보여주었습니다. 이러한 성과는 로봇학습 (Robot Learning)을 통해 인공지능을 장착한 로봇이 공장 밖에서 동작할 수 있는 가능성을 보여줍니다. 로봇학습은 학습이기에 당연하게도 데이터가 중요합니다. 오늘 글에서는 그중에서 로봇 학습용 데이터 수집 방법인 시뮬레이션, 모션 캡처, 원격 조작을 살펴보려고 합니다. 1. 시뮬레이션 (Simulation) 시뮬레이션을 통하면 그래픽스로 구성된 가상 세계에서 로봇을 동작시킬 수 있습니다. 이러한 가상 세계에서는 다양한 로봇 형태 및 목적하는 시나리오를 다 서술할 수 있고 이를 통해 로봇 학습 데이터를 얻을 수 있습니다. 특히, 시뮬레이션을 통하면 현실적으로 데이터 취득이 어려운 코너 케이스 등의 시나리오를 구성할 수 있기 때문에 안정성 보장을 위한 꾸준한 수요가 있을 것으로 판단됩니다. 가령 자율주행 시나리오에서 ’고라니가 차량을 덮치는 것’과 같은 한문철 TV에 나올 법한 교통사고 등의 특이한 데이터는 시뮬레이션을 통해서 얻어야 할 것입니다. 하지만, 시뮬레이션은 현실의 복잡한 특성을 완벽하게 반영하지 못하는 한계가 있습니다. 로봇학습을 위해서는 이 차이를 줄일 수 있는 추가적인 데이터 혹은 알고리즘을 요구로 합니다. 다만, 시뮬레이션-현실 차이가 줄어들수록 강점이 매우 커지기 때문에 많은 테크 기업들은 꾸준한 관심을 갖고 있습니다. 엔비디아는 로봇 시뮬레이션을 하기 위한 프레임워크 ISAAC SIM, 메타는 실내에서 동작하는 로봇을 만들기 위한 시뮬레이터인 Habitat을 진행입니다. 2. 모션 캡처 (Motion Capture) 모션 캡처 기술은 모션 캡처 슈트에 표시된 랜드마크를 여러 대의 카메라로 촬영하여 사람의 행동을 3차원 공간에 데이터화하는 기술입니다. 기존에는 애니메이션, 영화, 비디오 게임 등의 캐릭터를 움직이는 데 적용되었고 현재는 휴머노이드 로봇을 움직일 수 있는 학습 데이터로 용도가 확장되는 중입니다. 기존 정교한 모션 캡처 기술은 숙련된 배우가 모션 캡쳐 슈트를 입고 행동을 해야하기에 데이터 취득 비용이 많이 들었습니다만, 기술이 고도화됨에 따라 모션 캡쳐 비용을 크게 줄어들었습니다. 최근에는 카메라 한 대로 찍은 동영상 한대에서 사람의 행동을 뽑아내는 기술 또한 많은 연구개발이 진행되고 있습니다. 최근 들어 많아진 버튜버 또한 모션 캡처 기술이 저렴해지고, 성숙하면서 나온 흐름 중 하나입니다. 기업이 휴머노이드 로봇 개발에 힘쓰는 이유는 데이터 취득의 용이성에 있습니다. 모션 캡처한 데이터를 활용하기 위해서는 실제 사람과 캐릭터의 골격을 조율해주는 모션 리타게팅 (Motion retargeting) 과정이 필수적인데, 휴머노이드 로봇은 사람과 형태가 유사하기 때문에 이 부분에서 문제가 발생할 가능성이 작습니다. 즉, 가상-현실 차이가 작은 것이죠. 실제로 테슬라 휴머노이드 로봇인 옵티머스 1세대의 경우 키 173cm, 몸무게 73kg이며, 오픈AI가 투자해서 유명해진 피규어AI의 피규어01은 160cm, 60kg로 성인의 신체와 비슷한 키와 몸무게를 가지고 있습니다. 데이터 취득을 위해 다양한 모션 캡쳐 방법이 활용될 수 있습니다. (1) 모션 캡쳐 슈트를 사용하는 방법은 매우 정교하며 이미 상업적인 솔루션이 있습니다. 테슬라는 이 셋팅에 VR 장비를 이용해서 시선과 손의 움직임을 더해주는 것으로 보입니다. (2) 실제 작업 공간에 복수의 카메라를 부착하면 모션 캡쳐 슈트 없이도 어느 정도 사람의 행동을 데이터로 취득할 수 있습니다. 물류 창고, 공장 등과 같은 곳에서 작업을 촬영할 수 있을 것입니다. (3) 온라인상에는 사람을 피사체로 한 수많은 동영상이 있습니다. 이 동영상을 활용하여 로봇학습에 쓸 모션 데이터를 취득할 수 있습니다. 3. 원격 조작 (Tele-operation) 원격 조작은 로봇을 동작시켜서 데이터를 취득하는 방법입니다. 앞서 언급했던 두 방법 대비 고품질의 로봇학습 데이터를 얻을 수 있는 확실한 방법이라는 점에서 장점이 큽니다. 가상-현실 차이가 거의 없기 때문입니다. 하지만, 로봇을 직접 동작시켜야 하다 보니 숙련이 필요하고 데이터 규모를 키우기 힘든 단점이 있습니다. 로봇학습은 아니지만 원격 조작은 자체는 다양한 용도로 이미 사용되고 있습니다. 외과 수술에서 다빈치 로봇 등을 사용하여 정교한 외과 수술을 하고 있습니다. 또한, 자율주행을 보완하는 용도로 원격주행 또한 사용 예정입니다. 현재 자동차의 원격 운전은 내년 초 서비스를 목표로 논의 과정에 있으며, 관제센터에서 배달 로봇의 원격 제어 또한 당연히 언급되고 있습니다. 통신만 가능하면 직접적으로 로봇이 동작가능하기 때문에 원격 조작은 우리 생활 속에서 로봇 작동하는 가장 빠른 방법이 될 것으로 보입니다. 사용자의 직접적인 원격 조작으로 데이터 규모를 키우는 데 한계가 있지만, 반대로 원격 조작이 가능한 로봇 플랫폼이 현실에 널리 도입되면 대규모 실사용 데이터를 학습 데이터로 바로 활용할 수 있습니다. 따라서 기업들 입장에서는 원격 조작 로봇으로 시작해서 로봇 플랫폼 확장하는 것이 자연스러운 흐름일 것입니다. 이는 동시에 원격 조작 취득 데이터의 활용 방안에 대한 논의또한 만들 것입니다. 다시 또 반복될 가능성이 있는 사용자와 창작자의 소외 로봇학습을 위한 정형화된 방법은 없기에 기사들의 호들갑보다는 인공지능 로봇의 등장은 늦어지리라 생각합니다. 하지만 챗GPT와 같은 챗봇과 비교했을 때 현실에서 작동하는 로봇은 훨씬 더 높은 사회적 장벽이 있습니다. 챗봇의 환각이나 비윤리적 발화로는 직접적으로 상해를 입을 확률은 낮고 사용자가 유연하게 대응할 수 있지만, 로봇의 오작동은 누군가에게 상해를 입힐 수 있기 때문입니다. 따라서 춘추전국시대인 로봇 학습 방법들이 현실에서 검증되기까지는 인공지능 로봇의 등장은 온라인 미디어상의 검색엔진이나 챗봇보다 훨씬 더 오래 걸릴 수밖에 없습니다. AI에서 발생했던 학습 데이터 문제는 로봇 영역에서도 반복될 가능성이 높습니다. 프라이버시와 저작권 이슈 또한 마찬가지입니다. 현재 직장 내 CCTV는 개인정보보호법의 영역에서 다루어지고 있습니다만, 사측에서 작업 중 모션 캡처 데이터 수집을 위해 영상 촬영을 강제한다면 어떻게 해야할까요? 테슬라가 이용자의 운전 데이터를 가지고 오토파일럿을 학습했다면, 운전 데이터는 일종의 원격 조종 데이터로 활용된 샘입니다. 이 경우 로봇 학습 데이터 활용에 대해 운전자의 동의를 구해야하지 않을까요? 모션 캡처를 위해 온라인 상 동영상을 활용하는 것은 또 어떨까요? 로봇학습은 생성형AI와 달리 온라인 상 동영상이 학습에 쓰였는지 조차 알기 어렵습니다. 다가올 로봇 학습 시대에 상황과 맥락은 달라지겠지만, 학습 데이터 취득 및 활용에 이용자와 창작자의 의사가 반영될 수 있는 구조가 필요하다는 사실에는 변함이 없습니다. #feedback 오늘 이야기 어떠셨나요?여러분의 유머와 용기, 따뜻함이 담긴 생각을 자유롭게 남겨주세요.남겨주신 의견은 추려내어 다음 AI 윤리 레터에서 함께 나눕니다.
인공지능
·
2
·
텔레그램 성착취방의 톱니바퀴, AI
AI 윤리 뉴스 브리프 2024년 8월 다섯째 주by 🤖아침 1. 산업화하는 딥페이크 성착취물 한국의 딥페이크 성착취물 제작유통망에 관한 한겨레 보도가 지난주 나왔습니다. 여성의 얼굴 사진을 넣으면 나체 딥페이크 이미지를 생성해주는 불법합성물 제작 서비스와, 지인의 사진을 공유할 뿐만 아니라 공통 지인을 표적 삼아 성착취물을 제작·유포하는 익명 커뮤니티에 관한 내용입니다. 중요한 보도이니 읽어보길 권합니다. [단독] 딥페이크 텔레방에 22만명…입장하니 “좋아하는 여자 사진 보내라” (한겨레 2024-08-22) [단독] ‘○○○ 능욕방’ 딥페이크, 겹지인 노렸다…지역별·대학별·미성년까지 (한겨레 2024-08-22) 딥페이크 성착취물 제작·유포에 참여하는 인원의 규모(제작용 텔레그램 채널 한 곳에만 22만명이 참여), 조직적인 범죄 양상(여성 지인 사진을 바치는 ‘면접’ 시스템) 등 충격적인 면모가 많지만, 이 사안을 접하는 입장에서 화나는 이유 하나는 이것이 너무나도 예견 가능한 일이었다는 점입니다. 이미지 합성·생성을 쉽게 만드는 AI 기술이 기존의 성착취 구조와 만나 발생시킬 증폭 효과에 관해서는 셀 수 없을 정도로 많은 논의가 있었습니다. 업계나 정부산하기관 자료뿐만 아니라 초등학생 대상 AI 윤리 교재에서도 딥페이크의 해악을 경고합니다. 이런 논의가 선언으로 끝나지 않고 현실의 해악을 해소·예방하는 데 기여할 수 있도록 하는 실천을 고민해야 합니다. “유포 목적 없다”…만들어도 시청해도 처벌 피하는 딥페이크 (한겨레 2024-08-22) “대학에서, 알고 지내던 이들이…내가 알던 세상은 완전히 무너졌다” (한겨레 2024-08-22) 더 읽어보기 음란물은 딥페이크의 부작용이 아니라 순기능 (2024-07-03) 2. AI 이미지, 안 속을 자신 있나요? 생성형 AI의 주요 위험 중 한 가지는 사실과 구분하기 어려운 허위정보입니다. 최근 미국 공화당 대선 후보 도널드 트럼프가 AI 생성 이미지를 이용한 선전으로 문제를 일으켰는데요. 민주당 대선 후보이자 부통령인 카멀라 해리스를 공산당원으로 묘사한 이미지, 테일러 스위프트가 자신을 지지하는 것처럼 합성한 이미지 등을 SNS에 게시한 것입니다. AI 이미지라고 따로 명시하지도 않았습니다. 이런 가짜 이미지에 현혹되는 사람이 바보라고 생각하나요? 생성 이미지와 실제 사진을 구분하기란 의외로 까다롭습니다. 한번 직접 체험해보시죠. 여기 실제 곤충을 찍은 사진과, AI로 생성한 곤충 이미지를 하나씩 보여주는 퀴즈가 있습니다. AI 이미지를 클릭하면 점수를 얻고, 실제 사진을 하나라도 클릭하면 거기서 끝입니다. 25초 동안 가장 많은 점수를 따면 됩니다. https://huggingface.co/spaces/... 설령 내가 개인적으로 AI 이미지를 잘 구분할 수 있다 해도, 수많은 팔로워를 가진 정치인이 허위 이미지를 마음껏 활용하고 플랫폼이 별다른 제재를 가하지 않는 상황에서 이런 이미지가 갖는 힘은 무시할 수 없습니다. 허위정보의 폐해, 현재진행형입니다. 3. AI 위험 분류체계, 통합할 수 있을까? MIT 컴퓨터 과학 및 인공지능 연구소(CSAIL) 기반의 학제간 연구그룹인 퓨처테크(FutureTech)에서 ‘인공지능 위험 저장소’(AI Risk Repository)를 발표했습니다. 인공지능 위험에 관련된 기존 연구논문 43건을 메타분석하여 통합 분류체계를 제시하고 있습니다. 크게는 위험의 주체/의도/발생시점에 따른 분류와, 차별/프라이버시/허위정보/오남용/인간-컴퓨터 상호작용/사회경제 및 환경적 피해/시스템 안전 등 도메인에 따른 분류라는 두 체계 안에서 세부 항목이 있는 형식입니다. 연구팀 측에서는 이것이 ‘기존 AI 위험 프레임워크와 분류체계를 종합 검토하여 각각의 위험을 추출하고 데이터를 공개하는 최초의 사례’라고 주장하는데요. 분석 대상이 된 논문도 문헌 검토 기반의 자료가 많다는 점에서 꼭 그렇게 말할 수 있는지는 모르겠습니다. 메타-메타분석이라고 한다면 맞는 말일까요. 자료의 주 타겟은 정책입안자, 위험 평가 주체, 연구교육자 및 산업계라고 해요. AI 거버넌스와 법규제 관련 논의가 본격화하고 이론적 틀을 제시하는 노력도 활발한 이 시기에, 일종의 ‘완전판’ 프레임워크를 제시함으로써 담론적인 주도권을 가져가려는 시도로 읽을 수도 있어 보입니다. 저자들도 명시하듯 40여 개 문서를 단 한 명의 전문가가 검토했다는 점에서 ‘종합적’인 자료로서는 한계가 있지만요. 4. 이미지 생성 AI 기업 저작권 침해 소송 본격화 개인 창작자들이 스태빌리티 AI 등의 기업을 상대로 제기한 집단소송 기억하시나요? 깃헙 코파일럿 관련 소송, 오픈에이아이 챗지피티 관련 소송과 더불어 생성형 AI 시대의 중요한 재판 중 하나인데요. 이 사건을 다루는 미국 법원에서 AI 기업의 저작권 및 지적재산권 침해가 의심된다고 보아, 소송을 본격적으로 진행하기로 판결했습니다. 디스커버리 제도를 통해 증거 제시에 들어가게 되는 것입니다. 작년에 법원이 해당 소송의 일부 주장을 기각하며 원고측에게 저작권 침해 근거를 보완해오라고 지시한 것에 비추어 보았을 때, 이번 판결은 원고 측 입장에서 중요한 진전으로 볼 수 있습니다. 이미지-텍스트 데이터셋인 라이온(LAION) 시리즈에 원고의 저작물이 포함되었으며, 그 데이터를 학습한 이미지 생성 모델인 스테이블 디퓨전이나 그 모델을 활용한 서비스가 저작권을 침해했는지 따져볼 여지가 있다고 법원이 판단한 것이니까요. 이 재판의 향방에 따라서 스테이블 디퓨전 모델이나 라이온 데이터셋을 활용한 다른 서비스 또한 영향을 받을 가능성이 있습니다. 사실상 대다수의 이미지 생성 관련 기업에 영향을 미친다고 봐야겠죠. 사건의 귀추가 주목되는 이유입니다. 더 읽어보기 깃허브 코파일럿 소송에서 저작권법 쟁점 기각 (2024-07-22) 창작자 생태계 상상하기: 스태빌리티 AI 집단소송 기각에 부치는 글 (2023-11-15) #feedback 오늘 이야기 어떠셨나요?여러분의 유머와 용기, 따뜻함이 담긴 생각을 자유롭게 남겨주세요.남겨주신 의견은 추려내어 다음 AI 윤리 레터에서 함께 나눕니다.
인공지능
·
4
·
어떤 뉴스에 붙이는 각주
어떤 뉴스에 붙이는 각주 by 🍊산디 진실을 알고, 알리기 위해서는 섬세한 애정이 필요합니다. 복잡한 것을 나의 편의대로 납작하게 만들지 않으려면 섬세함이라는 미덕과 애정이라는 동력이 필요하죠. 지난 12일부터 13일까지, AI 거버넌스의 프런티어 이슈를 주제로 <서울 AI정책 컨퍼런스 2024>가 개최되었습니다. 컨퍼런스는 이틀간 표준화부터 저작권 문제에 이르기까지 AI와 관련하여 다룰 수 있는 거의 모든 주제들을 다루었습니다. AI가 화두가 되기 전부터 꾸준히 인터넷 정책 분야에서 연구를 계속해온 유수의 연구자들이 모였습니다. 그 중 제가 소개하려는 파트는 개인정보보호 정책과 관련된 내용입니다. 개인정보보호 세션은 대니얼 솔로브(Daniel Solove)라는 조지 워싱턴 대학 법학교수의 기조연설로 시작했습니다. 솔로브 교수는 정보 기술과 프라이버시의 관계를 꾸준히 다루어 온 세계적인 석학입니다. 발표 내용과 청충과의 호흡 모두 훌륭해서 몰입할 수밖에 없는 훌륭한 기조연설이었습니다. 제가 구글에 검색했을 때, 두 개 언론사가 솔로브 교수의 발표를 내용으로 보도했습니다. 아시아경제, "AI 기술 발전할수록 유연한 법체계가 개인정보 보호에 바람직" 아주경제, “'석학' 솔로브 교수 "포괄적 법체계가 AI 시대 개인정보 보호에 적합" 위 보도들은 자칫 솔로브 교수가 오늘날의 기술 환경에서 개인정보보호법이 실질적 효력을 갖기 어려우며, 법이 더욱 유연해져야 한다고 주장한 것으로 읽힙니다. 이러한 요약은 그의 주장을 충분히 전하지 못합니다. 그러니 이 레터에서는 저 나름의 섬세한 애정과 함께 컨퍼런스에서 솔로브 교수의 발표 내용을 나눠보려 합니다. 그는 현재 이용자들이 처해 있는 상황에서 출발합니다. 사막에서 갈급해하는 와중에 물을 주겠다는 사람이 나타나서는 개인정보를 내놓으라고 한다면, 누구나 기꺼이 개인정보를 내어줄 것입니다. 이용자들은 개인정보 수집 및 활용에 동의하는 데 대한 위험을 충분히 인식하지 못합니다. 게다가 이용자들은 수 많은 기업과의 ‘계약’을 통해 자신의 개인정보를 관리해야합니다. 더군다나 개인정보보호약관은 나날이 길어지고 있죠. 정보 서비스를 이용하는 데 있어 개인정보 관리란 너무 복잡하고 어려운 일입니다. 이러한 까닭에 “여기에 당신의 권리가 있고, 당신이 스스로 당신의 권리를 지키세요”라는 현재의 개인정보보호 체계는 그렇게 효과적이지 않다고 솔로브 교수는 주장합니다. 정보주체 개개인의 ‘동의’에 기반한 현재의 모델은 환상이라는 것이죠. 그는 개인정보보호가 사회적이어야 한다고 주장합니다. 개인에게 통제권을 준다는 환상을 강화하기보다는, 법이 사회적 요구로서 개인정보를 보호하고 기업의 개인정보 수집 및 활용을 규율할 수 있어야 한다는 것이죠. 이는 개인정보의 수집과 관리를 개인의 동의 여부, 개인-기업 간 계약관계로 축소하는 대신 사회가 지키고자 하는 개인정보보호 원칙을 분명히 하는 작업을 뜻합니다. 맞습니다. 솔로브 교수의 주장은 앞선 두 보도들이 언급한 것처럼, ‘엄격하고’, ‘구체적인’ 법을 마련하는 것과 다릅니다. 하지만 기업의 처지와 기술의 특성을 십분 고려하여 법 체계가 유연해져야 한다는 의미는 결코 아닙니다. 패널 토론에서 솔로브 교수는, 기술이 변하고 있으니 법도 변화해야 한다는 주장이 존재하지만, 법은 원칙이지 기술이 아니라고 재차 강조했습니다. 실제 변화하고 있는 것은 “이 기술은 전에 없던 신기술이라 기존 법리가 적용될 수 없다”며 책임을 회피하는 기업의 논거들이라는 거죠. 솔로브 교수는 이윤은 자신들의 것이고, 모든 위험은 이용자 개인이 부담하기로 동의했다는 기업의 주장에 대응하는 것이야말로 법의 역할이라고 보았습니다. 우리에게는 개인정보보호법이 무엇을 보호하고자 하는지를 분명히 하는 작업이 필요합니다. 개인정보보호는 왜 중요하며, 무엇을 지키고자 할까요. 집단으로서, 사회로서 개인정보를 보호하는 환경은 어떻게 만들 수 있을까요. 이러한 물음이 납작해지지 않기 위한 섬세한 애정이 더 많아지길 기원합니다. #feedback 오늘 이야기 어떠셨나요?여러분의 유머와 용기, 따뜻함이 담긴 생각을 자유롭게 남겨주세요.남겨주신 의견은 추려내어 다음 AI 윤리 레터에서 함께 나눕니다.
인공지능
·
3
·
생성형 AI는 검색엔진의 꿈을 꾸는가?
AI 윤리 뉴스 브리프 2024년 8월 넷째 주by 🧙‍♂️텍스 1. 생성형 AI의 문제를 우회하기 위한 전략: 검색엔진 오픈AI는 2024년 7월 25일, SearchGPT의 프로토타입을 공개했습니다. 이는 향후 출시될 서비스의 티저로, 페이지에는 사용자들이 먼저 서비스를 체험할 수 있는 웨이팅 리스트가 포함되어 있었습니다. 특히, 해당 페이지에는 "사이트가 생성형 AI 학습에서 제외되더라도 검색 결과에 나타날 수 있습니다."라는 매우 흥미로운 문구가 눈에 띄었습니다. 오픈AI가 이미 존재하는 검색엔진 시장에 뛰어드는 선택을 통해 현 생성형 AI의 저작권 문제를 우회하고 새로운 수익원을 확보하는 전략을 추구하는 것이란 판단이 듭니다. 이 경우에는 생성형 AI의 불확실성을 피하고 이미 확립된 검색엔진의 크롤러 및 데이터 거버넌스를 채택할 수 있기 때문입니다. 구글의 반독점법 위반 판결과 함께 새로운 플레이어의 등장으로 오랜 기간 구글이 독점해 온 검색엔진 시장에도 변화가 있을지 앞으로 지켜봐야 할 것으로 보입니다. 2. 프라이버시 샌드박스 적용을 또 다시 유예한 구글 2024년 7월 22일, 구글은 프라이버시 샌드박스를 통해 제3자 쿠키를 완전히 대체하겠다는 기존 계획을 수정하여 여전히 옵션으로 남기는 결정을 하였습니다. 구글은 그 근거로 프라이버시 샌드박스의 실험 결과에서 제3자 쿠키를 사용하는 현재 시스템에 비해 프라이버시 샌드박스가 추천 정확도가 떨어져 광고 수익이 20% 감소할 수 있다는 점을 지적했습니다. 프랑스 온라인 광고 업체인 크라이오는 퍼블리셔들이 60%까지 광고 수익의 하락이 있을 수 있다고도 주장합니다. 프라이버시 샌드박스는 온라인상 이용자를 직/간접적으로 개인정보에 접근하지 않으면서도 현재의 온라인 광고 시장을 유지하려는 프로젝트입니다. 이 이니셔티브는 온라인 광고에서 사용자의 검색기록을 담고 있는 제3자쿠키를 완벽히 대체하는 프레임워크를 도입하는 것을 목표로 2020년 1월에 시작했습니다. 특히 웹브라우저(크롬) 및 모바일(안드로이드)에서 점유율 1등을 차지하고 있는 구글은 현 온라인 광고 시스템을 유지하면서도 규제당국 양쪽을 만족시키기 위한 방안으로 이를 시작했습니다. 온라인 광고는 개인정보 침해와 같은 부정적인 측면을 담고 있는 동시에 이용자에게 무료 인터넷 서비스를 제공할 수 있는 원천이라는 점에서 프라이버시 침해 정도에 대한 줄다리기가 여전히 이어지고 있습니다. 이와 관련된 이해당사자들 간의 논의에서 막상 프라이버시의 원천인 사용자는 배제된 현 상황에서 개인정보 보호를 위한 진전은 어려울 것으로 보입니다. 3. 퍼플렉시티의 표절 논쟁과 수익 분배 프로그램 시작 🦜더 읽어보기- 구글 검색 너 독점 맞음 (2024-08-12)- 1. 현실화되는 인터넷 장벽 (2024-08-05)- 4. 여러분의 트윗은 생성 AI 학습에 쓰이는 게 디폴트입니다 (2024-07-29) #feedback 오늘 이야기 어떠셨나요?여러분의 유머와 용기, 따뜻함이 담긴 생각을 자유롭게 남겨주세요.남겨주신 의견은 추려내어 다음 AI 윤리 레터에서 함께 나눕니다.
인공지능
·
1
·
모델을 넘어, 한국을 넘어
모델 안전을 넘어선 AI 안전의 필요성 by 🤔어쪈 지난주 저명한 정치경제학자 대런 애쓰모글루(Daron Acemoglu)가 쓴 ‘AI 안전성 논의가 아예 잘못되었다(The AI Safety Debate Is All Wrong)’는 도발적인 제목의 칼럼이 눈길을 끌었습니다. 올해 초 AI 윤리 북클럽에서 읽은 <권력과 진보> 저자이기도 한 그는 사실 비교적 일찍부터 AI에 관심을 가지며 기술의 경제적 함의를 연구한 바 있는데요. 이번에 쓴 글에서 나타난 그의 입장은 놀라우리만치 AI 윤리 레터에서 지적해 온 내용과 비슷했습니다. 글을 간단히 요약하자면 이렇습니다. 현재 AI 안전성 논의는 AGI의 잠재적인 파멸 위협에 과도하게 집중하고 있어 기술 개발 및 사용 주체의 의도나 권력 구조를 간과한 채 AI 모델의 정렬(alignment) 문제 해결에만 초점을 맞추고 있음 이는 AI의 불필요한 의인화를 넘어 이미 발생중인 실질적인 위험 방지에 도움이 되지 않으며, AI 산업에 대한 과장 광고 효과로서 투자와 인재 유치에만 도움이 될 뿐임 AI 안전성 논의는 주요 AI 개발 및 사용 주체이자 권력을 가진 기술 기업과 정부를 견제할 수 있는 제도적 장치에 대한 시민 요구로부터 다시 출발해야 함 이른바 AGI 논쟁은 AI 윤리 레터의 시작부터 함께해 온 주제입니다. 뉴스레터 초기부터 지금의 기술 기업들의 정반대편에 서있는 팀닛 게브루를 소개하고, AGI가 가리고 있는 현실을 보자고 말해왔죠. AI 하이프 뉴스 체크리스트를 만들어 AI 윤리 논의를 혼탁하게 만드는 과장 광고에 대한 경각심을 불러일으키기도 했습니다. 겉보기에 마술처럼 느껴지기도 하는 AI가 실제로는 어떻게 학습되고 작동하는지를 다루고, 미래가 아닌 지금 바로 여기서 나타나는 문제들을 지적했습니다. 최근에는 AGI를 주제로 북클럽도 진행하여 성황리에 마무리했습니다. 하지만 대런 애쓰모글루와 AI 윤리 레터가 계속해서 지적해온 AGI 논쟁을 차치하고서라도 저는 여전히 지금의 AI 안전성 논의가 잘못된 길에 들어섰다고 생각합니다. 바로 ‘단일 AI 모델’에 초점을 맞추고 있다는 점 때문입니다. AI 안전이라는 주제가 기술적 문제 해결에만 천착하는 문제는 이미 지난 레터를 통해 다룬 바 있습니다. 하지만 자세히 살펴보면 기술적 문제 역시 충분히 다루고 있다고 하기 어렵습니다. 오픈AI, 구글, 앤스로픽, 네이버 등 AI 기업들이 내놓은 AI 안전성 프레임워크는 하나같이 GPT-4o, Gemini 1.5 Pro, Claude 3 Opus 등 그들이 개발한 최신 AI 모델의 위험성 평가를 주요 내용으로 담고 있습니다. 여기서 말하는 위험성 평가란 해킹 문제를 풀 줄 아는지, 생화학 무기 관련 정보를 제공하는지, 사용자를 속일 수 있는지 등을 의미합니다. AI 정렬 문제란 거창하게는 AI가 인간 사회의 가치를 따르도록 하는 것이지만, 실상은 챗봇이 어떤 말을 하지 못하도록 할 것인지가 핵심입니다. 대런 애쓰모글루가 지적한대로 과도한 의인화로 인해 AI 안전이 너무 축소된 모습이죠. 단일 AI 모델을 대상으로 한 평가는 최신 AI 연구 및 산업 동향과도 동떨어져있습니다. 요즘 AI 업계의 키워드인 AI 에이전트 내지는 에이전트 워크플로우(agentic workflow)는 하나 이상의 AI 모델로 시스템을 구성하는 것을 전제합니다. 위 도식을 예로 들자면, 실행 (Execution), 맥락 제공 (Context), 작업 생성 (Task Creation), 우선순위 설정 (Prioritization) 등의 모듈 각각에 AI 모델이 위치하여 에이전트로 기능하는 것이죠. 실제로 많은 서비스가 이러한 구조를 바탕으로 만들어지고 있습니다. 이처럼 다소 복잡한 구조의 ‘시스템’으로서의 AI 서비스를 두고 단일 AI 모델만을 AI 안전 평가 대상으로 삼는 것을 효과적이라고 보긴 어렵죠. 실제로 복수의 AI 모델을 활용하면 개별 AI 모델로는 불가능하던 위험한 일을 수행할 수 있다는 연구 결과도 있습니다. 우리가 살아가면서 사용하는 많은 종류의 기술들 중 단일 객체로 구성된 사례는 거의 없습니다. 대부분 여러 모듈로 구성된 시스템이죠. AI 역시 마찬가지입니다. 단일 AI 모델이 부적절한 출력을 하지 못하도록 막고서 안전하다고 홍보해도, 여러 개의 AI 모델과 다른 기술들을 활용해 만든 복합적인 시스템은 안전하지 못한 상황이 발생할 수 있습니다. 요컨대 AI 안전성은 모델 안전성을 넘어서야만 합니다. 이렇게 모델이 아닌 시스템을 보면서 AI 안전에 대한 시야를 넓히면 시스템이 기술로만 구성되는 것도 아님을 어렵지 않게 알 수 있는데요. 다음에는 이처럼 AI 안전을 보다 확장된 시각으로 이해하고자 하는 사회기술적 접근 방식에 대한 논의를 소개해드리도록 하겠습니다. 동아시아 지역의 AI 윤리가 궁금한 사연 by. 🤖아침 AI 기술과 사회의 관계에 주목하는 뉴스레터를 1년 남짓 운영하며 줄곧 느끼는 갈증이 있습니다. 내가 사는 한국, 좀 더 넓게는 동아시아 지역에 발을 디딘 비판적/대안적 AI 담론이 부족하다는 것입니다. 갑자기 웬 푸념? 조금 부연해보겠습니다. AI 기술에 관련된 이야기는 흔히 서구-영어권을 위주로 서술됩니다. 이 세계관의 중심에는 미국 실리콘밸리, 기술적 혁신이 흘러나오는 곳이 있습니다. 또다른 주연급인 EU는 법규제 등 제도적 장치를 선도하는 역할이고, 중국은 기술개발과 제도 측면에서 모두 발빠르지만 속내를 알 수 없는, 사실상의 적대 진영으로 자리합니다. 이 세계관에서 한국을 포함한 여타 국가에게 중요하다 여겨지는 것은 위 국제질서 속에서 생존하는 일입니다. 서구 기업과 적극 협력하거나, 아니면 실리콘밸리 자본에 잠식되지 않는 독자 경쟁력을 확보하기 위해 자국 산업을 육성하며 자국민을 보호할 수 있는 규제를 마련하거나, 기본 전제는 비슷합니다. 즉 기술은 서구에서 나와 비서구로 전파되거나, 비서구에서 따라잡아야 하는 무언가라는 것입니다. 물론 이는 지나치게 단순한 관점입니다. 기술은 서구에서만 만들어지는 것이 아니며, 일방적으로 '전파'되는 것도 아닙니다. 각 지역의 기술 개발은 서구 기술의 단순한 '이식'이 아니라 다양한 사회적 관계 속에서 이루어집니다. 여러 비판적 연구, 언론 보도, 활동가의 개입 덕분에 우리는 아프리카나 동남아시아의 저임금 노동이 AI용 데이터를 만들고, 컴퓨팅 인프라를 위한 광물이 세계 각지에서 채굴되는 의존 관계를 이미 알고 있습니다. 이같은 비판적 담론은 수행하는 중요한 역할 하나는 AI 기술이 기존 권력 구조를 강화 재생산하는 방식을 보여줌과 함께 남반구 세계(제3세계/다수세계 등으로 불리기도 하는)의 관점을 드러내어, 서구 중심의 AI 세계관에 균열을 내는 것입니다. AI를 둘러싼 개념을 다양한 관점에서 재정립하는 작업(사례1, 사례2), 참여-개입-연구의 경계를 넘나드는 활동(사례1, 사례2), 비-서구에 초점을 맞춘 언론 활동 등 다양한 방면에서 이같은 노력이 이루어집니다. 하지만 [서구 - 남반구]로 확장된 구도에서도 한국 같은 지역은 다소 모호한, 희미한 영역으로 남아 있다고 느낍니다. 왜 이런 기분이 들까요. AI 기술 개발뿐만 아니라 기술 비판 담론 역시도 서구-영어권을 주축으로 활발한 조건 속에서, 한국 등지에 주목하는 비판적 AI 논의가 실제로 충분하지 않을지도 모릅니다. 한편, 이곳을 기반으로 힘쓰는 연구자, 기술 종사자, 교육자, 활동가, 창작자, 언론 종사자, 정책전문가 등이 존재한다는 사실 또한 분명합니다. 실제로 이들의 노력 덕에 노동, 교육, 기후 등 AI를 둘러싼 여러 이슈에서 사회적 대화가 풍부해지고 있고요. 그러니까 제가 국내 논의에 아직 과문해서 부족함을 느끼는 부분도 있겠지요. 이 뉴스레터 역시도 서구나 남반구의 관점을 소개하는 데 그치는 게 아니라, 이곳에서 이루어지는 논의를 찾아 배우고 연결하는 시도의 일환이라고 할 수 있고요. 그럼에도 아쉽습니다. AI 관련 논의가 사회적 가치보다 산업 육성, 국제 경쟁, 트렌드 적응 같은 것에 쏠려 있기 때문만은 아닙니다. 그건 한국뿐만 아니라 어디서나 나타나는 보편적인 현상에 가깝습니다. 이에 대한 비판적 개입은 물론 필요하지요. 하지만 ‘이곳’, 한국 그리고 나아가 동아시아의 이야기가 획기적으로 더 필요하다고 느끼는 이유가 있습니다. 지역적 현실에 충분히 발딛지 못한 기술 비판 담론은, 주류 질서에 대안을 제시하기보다 오히려 그것에 편취될 위험을 갖는 것 아닐까요? 예컨대 AI 윤리/안전 분야 일각에서 ‘다양성’이라는 키워드가 ‘AI 주권 확보’를 위해 국내 산업을 육성해야 한다는 주장의 근거로 동원되거나 ‘리터러시’ 개념이 ‘AI 서비스 사용자 비중’으로 환원되는 양상을 보며, ‘AI 윤리’가 정치안보/경제 논리를 맞닥뜨릴 때 어떤 효력을 가질 수 있을지 걱정됩니다. 다시 말해 앞서의 서구 중심 AI 세계관이나 거기서 뻗어나오는 발전주의 논리가 AI 윤리 논의를 포섭하여 무력화할 위협이 있으며, 이 위협에 대응하는 방식 중 하나는 지역적 현실에 최대한 구체적으로 자리잡는 것이 아닐까 싶습니다. 여기에 하나 덧붙이자면, 국경의 테두리 안에서만 진행되는 논의 역시 (그간의 비판적 담론이 보여주듯 현실과 부합하지 않을 뿐더러) 개별적 국가 내부의 사회적 이슈로만 머물러서는 '발전주의'를 극복하기 어려울 것 같습니다. 유사한 일이 벌어지고 있는 다른 곳의 사정을 파악하고, 그곳의 비판적 목소리와 이곳의 목소리를 연결하고 확장하는 일이 필요해 보입니다. 지역적 맥락을 구체화하고, 특정 국가 이상으로 더 넓은 연대를 만들어가는 작업을 통해 국가주의/자본주의적 논리에 따른 AI 발전론을 견제하는 하나의 축을 마련할 수 있지 않을까 합니다. 그리고 이러한 지역적 맥락은 앞서 언급한 서구 및 남반구와의 관계뿐만 아니라 한국과 주변 지역의 위치성과 관계성 측면에서 고민해야 합니다. 달리 표현하자면 이런 것입니다. 독자 피드백 중 종종 ‘이런 문제의식을 공유하는 사람이 주변에 잘 없는데 뉴스레터 같은 공간이 있어서 다행’이라는 요지의 의견을 주시는 경우가 있습니다. 물론 감사한 일입니다. 동시에, 이같은 공간이 더 넓고 깊어지면 좋겠습니다. 첫머리에서 동아시아를 호출한 것은 이런 연유입니다. 거칠게 말하면 한국과 여러 특성을 공유하는 지역에서 AI 윤리 관련 논의를 확장하고 연결할 필요가 있다는 것입니다. 일본, 대만 등을 아우르는 동아시아 공간은 한국과 지정학적 맥락뿐만 아니라 근현대를 거쳐오며 평화, 노동, 환경, 젠더 등 다양한 시민 연대를 실천해온 역사적 맥락 또한 공유합니다. 이같은 조건이 AI 기술에 관한 비판적 논의에서 공통의 지점을 만들어내는 데 도움이 될 수 있을까요. 즉 유사성을 발견하고, 그 과정에서 목소리를 키울 수 있지 않을까요. 앞으로 이런 질문에 대한 답을 얻을 수 있으면 좋겠습니다. 질문 자체도 더 다듬어야 할테고요. 우선 한국뿐만 아니라 동아시아 지역에서 AI 윤리와 관련된 주요 이슈는 어떤 것이 있었는지 찾아보려 합니다. 거창한 취지와 별개로 개인적인 호기심도 있고요. (일본이나 대만 등지에서는 한국의 이루다 이슈 같은 것이 없었을까요?) 이 주제에 관해 조언이나 팁이 있으신 분, 같이 디깅하고 싶으신 분은 연락 주세요. #feedback 오늘 이야기 어떠셨나요?여러분의 유머와 용기, 따뜻함이 담긴 생각을 자유롭게 남겨주세요.남겨주신 의견은 추려내어 다음 AI 윤리 레터에서 함께 나눕니다.
인공지능
·
구글 검색 너 독점 맞음
1. 구글 검색 너 독점 맞음 온라인 검색 시장에 지각변동을 일으킬 것으로 기대되는 미 법원의 판결이 나왔습니다. 구글이 애플 등 기기에 기본 검색 엔진으로 탑재되기 위해 천문학적인 금액을 지급하는 방식을 통해 불법적으로 시장에서 독점적인 지위를 유지해왔다는 것입니다. 많은 사용자가 기기의 초기 설정값을 바꾸지 않은 채 인터넷 브라우저나 검색엔진 등을 사용한다는 것은 이미 널리 알려진 사실입니다. 이를 고려할 때, 기업들이 관습이라고 포장한 기본 검색 엔진 설정에 대한 위법성을 판단하는 것이 이렇게 오래 걸렸다는 것이 오히려 의아하게 느껴지기도 합니다. 검색 엔진은 단순히 정보의 접근성만의 문제가 아니라, 플랫폼 기업의 수익의 상당부분을 차지하는 검색과 직결된 문제라는 점에서 특히 이 판결의 중요성이 두드러집니다. 이 판결이 실제로 어떤 정책적 변화를 일으킬지 눈여겨봐야겠습니다. 2. 회의주의자로 살아남기 역사적으로 과학 기술의 발전은 인류가 벌이는 전쟁과 긴밀한 관계로 이어져 왔습니다. 이전 뉴스레터에서 살펴보았듯, 많은 AI 기술이 오늘의 전쟁과 죽음에 기여하고 있습니다. 그리고 이러한 움직임을 비판하고 거부하는 목소리도 다른 뉴스레터에서 전해드렸습니다. 며칠 전 'AI 시대의 무기 판매상'이라고 불리는 미국의 AI 기업인 팔란티어가 마이크로소프트와 협업하여 미 국방부와 정보기관에 AI 분석 시스템을 제공한다는 소식이 발표되었습니다. 관련 국내 기사를 찾아보니 이 발표 이후 해당 기업의 주가가 어떻게 변동되었는지 다루는 내용이 대부분이었습니다. AI와 전쟁, 그리고 주식시장. 우크라이나와 가자지구를 비롯한 여러 전쟁의 한 가운데 인류의 번영을 위해 개발되었다는 각종 AI 기술이 사용되는 것을 우리는 실시간으로 지켜보고 있습니다. 동시에 인류 역사상 가장 부유한 기업들이 이러한 추세에 동조하는 것, 그리고 그런 거래의 이면에는 무관심해보이는 인류의 미래가 암담해 보이는 것은 저 뿐일까요? AI 기술의 첨단에 서 있는 기업들의, '인류의 번영'을 위한다는 선언이 공허하게 느껴지는 이유입니다. 🦜더 읽어보기- How Tech Giants Turned Ukraine Into an AI War Lab (Time, 2024-02-08)- 🦜전쟁 기술을 거부하는 노동자들 (2024-04-15)- 🦜전쟁과 죽음의 기술 (2023-10-30) 3. 국산 거대 언어 모델 추가요 LG AI 연구원에서 거대 언어 모델 EXAONE 3.0 7.8B을 발표했습니다. 해당 모델은 연구를 목적으로 하는 경우 자유롭게 사용할 수 있는 라이선스로 공개되었습니다. 같이 발표한 기술 보고서에서 '책임 있는 AI' 를 모델 학습 및 평가와 더불어 별개의 장으로 할애하여 다룬 것이 돋보입니다. 다만 AI 윤리의 관점에서 보았을 때는 몇가지 아쉬운 점도 있었습니다. 하나는 기술 보고서에서 다루는 모델의 위험성을 논함에 있어서 악의를 가진 오용에 집중한다는 것이었습니다. 거대 생성 모델의 '선용'과 '오용'의 애매한 경계에 대해서는 지난 레터에서도 논의한 적 있죠. 또 다른 하나는 편향을 측정하는 방법에서의 정확성인데요, 이는 EXAONE 3.0 7.8B 모델의 자체의 한계라기보다는 해당 모델을 평가하는 데 사용한 벤치마크 데이터의 한계입니다. 기술 보고서를 보면, 지역 편향의 예시로 지역의 난방비와 소득수준의 연관성을 묻고 있습니다. 그러나 과연 이것이 과연 지역 편향의 문제일까요? 거대 언어 모델을 비롯한 각종 생성 모델의 사회적 영향력을 평가하는 데에 안정성이나 편향이 널리 사용되지만, 이러한 측정 지표의 유효성에 대해서 많은 비판이 이루어지고 있기도 합니다. 거대 생성 모델이 온 세상 곳곳에 사용되고 있지만, 아직 모델의 위험성이나 영향력을 정확하게, 많은 이들이 납득할 수 있는 형태로 측정할 수 조차 없다는 것이 안타까운 AI 개발의 현주소입니다. #feedback 오늘 이야기 어떠셨나요?여러분의 유머와 용기, 따뜻함이 담긴 생각을 자유롭게 남겨주세요.남겨주신 의견은 추려내어 다음 AI 윤리 레터에서 함께 나눕니다.
·
5
·
브뤼셀 효과일까 브뤼셀 장벽일까
브뤼셀 효과일까 브뤼셀 장벽일까 by 🍊산디 미국은 군사력과 기술력으로, 중국은 ‘일대일로’로 대표되는 대규모 투자로 국제사회에서 영향력을 행사하고 있습니다. 이런 와중에 또 다른 주요 행위자, EU는 규제를 통해 국제사회에서의 지위를 유지하려는 독특한 전략을 펼치고 있죠. EU는 ‘브뤼셀 효과(Brussels Effect)’를 염두에 두고 정책을 설계하는 것으로 보입니다. 브뤼셀 효과는 EU가 정책 환경을 선도함으로써 전 세계 시장 행위자에게 영향을 미친다는, EU의 포부이자 실제 현상입니다. 지난주에 소개드렸던 정당한 이익의 법리도 EU GDPR(General Data Protection Regulation)로부터 영향을 받았습니다. 우리나라 인공지능 법을 논의에 자주 등장하는 위험기반 접근(risk-based approach)이 EU 인공지능 법(AI Act)을 토대로 하고 있음은 두말할 나위 없습니다. EU는 단일 유럽 시장을 달성하고 유럽의 소비자와 환경을 보호하는 두 가지 목표를 위해 움직입니다. 1990년대 이래 수십 년간 상품과 서비스가 자유롭게 이동할 수 있는 단일 시장을 조성하고, 유럽 전역의 소비자와 환경을 보호하기 위한 제도적 노력을 해왔죠. 이들은 전 세계 시장을 목표로 하는 글로벌 기업에 큰 영향을 미쳐왔습니다. 아누 브래드퍼드(Anu Bradford)는 그의 저서에서 브뤼셀 효과가 나타날 수 있었던 이유를 다음과 같이 분석합니다. 시장 규모: 유럽 시장은 규모 면에서 클 뿐만 아니라 매력적인 시장이기도 합니다. 다양성이 높고 구매력이 높을뿐더러, 영향력 있는 소비자가 많아 사업자가 실질적인 수요를 찾기 용이합니다. 높은 규제 역량: EU 집행위원회는 높은 정책 전문성을 갖고 있는 것으로 평가됩니다. 학력 수준이 높을 뿐 아니라 다양한 국가에서 활동해 온 전문가들이 모여있다 보니 회원국 일반에 적용 가능한 정밀한 정책 설계 역량을 갖추고 있다고 하네요. 유럽 집행위원회의 예산이 적다는 사실 또한 모든 역량을 규제에 쏟는 계기가 되었습니다. 엄격한 기준: 유럽 시민들의 소비자 및 환경 보호 요구로 인해 EU 규제 기준은 더욱 강해졌습니다. EU는 만장일치가 아닌 가중 다수결(qualified majority)을 통해 의사결정을 하기 때문에, 모두가 합의할 수 있는 수준으로 규제 수준을 낮추지 않아도 새로운 규제를 다른 국가에게 설득할 수 있는 계기가 되었습니다. 고정된 정책 대상: EU의 규제 프레임은 소비자를 중심으로 설계되어 있습니다. 즉, EU 소비자에게 상품 및 서비스를 판매하는 기업은 소재지와 무관하게 규제 대상이 됩니다. 이로써 규제의 예측 가능성이 높아집니다. 표준화를 통한 비용 절감: EU는 대규모의 법적, 기술적 표준화를 이룸으로써 기업이 EU의 규제를 준수하는 과정에서 발생하는 비용을 줄입니다. 기업은 일단 EU의 규제를 따르면 EU 회원국뿐만 아니라 전 세계 어디에서나 규제 위험을 피할 수 있을 것이라는 기대를 하게 되죠. 기업에게도 EU의 규제를 준수하는 것이 효율적인 전략일 수 있습니다. 하지만 AI 기업 간 경쟁이 치열해지는 지금, 브뤼셀 효과가 지속될 수 있을지 회의하게 되는 사례들이 속속 나오고 있습니다. 메타는 멀티모달 AI 모델(가상 비서)을 EU 시장에 제공하지 않기로 하는가 하면, 애플은 아이폰15부터 장착되는 AI 기능인 ‘애플 인텔리전스’를 EU 시장에서는 서비스하지 않기로 했습니다. 이런 결정은 부분적으로 EU AI 법의 범용AI모델(General Purpose AI, GPAI)에 대한 별도 규제에 근거합니다. AI 법은 GPAI 학습에 활용된 데이터의 목록을 공개하고 저작권자가 요청할 경우 해당 데이터를 학습 데이터셋에서 삭제하는 것, 적대적 테스트를 시행하는 것, 사건 발생 시 이를 추적하고 문서화할 것 등을 요구합니다. 디지털시장법(Digital Market Act, DMA)도 규제 장벽으로 거론됩니다. DMA의 상호호환성 규정을 준수하기 어렵다는 겁니다. AI 기업들은 모든 자원을 총동원하여 독자적인 AI 기술을 개발하고, 그것의 성능을 높여 최대의 이용자를 확보하는 데에 혈안이 되어 있습니다. 안전성과 기업 정보 공유는 뒷순위에 있죠. 이런 와중에 EU의 규제를 준수하려면 기업은 적지 않은 비용을 치러야 합니다. 만약 범용AI모델을 제공하는 빅테크가 EU 시장에 진출하게 되면 다른 사업자와의 호환성을 위해 기술에 대한 정보를 공개해야 하며, 저작권자의 권리 보호를 위해 학습 데이터 리스트를 공개하고 삭제 요청에 대응해야 하고, 규제기관에게 기업 경영과 AI 모델에 대한 정보들을 제출해야 하며, 안전성에 문제가 있다는 사실이 드러났을 시 대대적인 조사, 언론 보도와 함께 AI 상품에 대한 대중의 신뢰도가 낮아지고, 적용되는 법에 따라 전 세계 매출액의 최대 7%~10%에 이르는 과징금을 내야 합니다. 기업들의 입장도 이해가 되기는 합니다. 규제는 비용일 수 있고, 한정된 자원을 ‘경영자가 원하는 대로’ 배분하는 데에 영향을 미치죠. 기업은 본래 수익을 좇습니다. 그러니 기업이 비겁하다는 비판보다 필요한 것은 이러한 정책 환경이 어떤 효과로 이어질지에 대한 판단입니다. AI 기업들이 EU에 서비스를 출시하는 걸 꺼리는 모습입니다. 아무리 EU라도 EU 소비자가 없는 기업을 규제할 권한은 없습니다. 세계화를 향유했던 EU 브뤼셀 효과는 빠르게 블록화하는 오늘날에도 계속될 수 있을까요? 규제로 인해 EU 소비자의 후생이 저해되는 것은 아닐 것일까요? 혹은, 비유럽 국가 소비자들의 데이터로 ‘안전’해진 서비스를 EU가 체리피킹하는 결과로 이어지지는 않을까요? EU를 피하는 기업들은 경쟁에서 살아남을 수 있을까요? #feedback 오늘 이야기 어떠셨나요?여러분의 유머와 용기, 따뜻함이 담긴 생각을 자유롭게 남겨주세요.남겨주신 의견은 추려내어 다음 AI 윤리 레터에서 함께 나눕니다.
인공지능
·
2
·
AI 개발 경쟁이 초래한 인터넷 장벽
AI 윤리 뉴스 브리프 2024년 8월 둘째 주by 🤔어쪈 1. 현실화되는 인터넷 장벽 웹사이트 운영자는 콘텐츠를 AI에게 빼앗기지 않기 위해 장벽을 세우고, AI 기업들은 눈에 불을 켠 채 학습 데이터를 찾아다니며 장벽을 뚫기 위해 갖은 수단을 동원하는 모습은 어쩌면 예견된 미래일지 모릅니다. AI 기업들은 크롤러를 이용하여 인터넷 상의 데이터를 수집하는데, 그 정도가 과하다는 웹사이트 운영자들의 불만이 터져나오고 있습니다. 하루에만 10TB를 다운로드하며 오픈소스 문서 저장소에 한달 5000 달러 이상의 웹 호스팅 비용을 물리는가 하면, 크롤러명을 바꿔가며 차단을 우회하고 있다는 의혹까지 불러일으키는 경우도 있습니다. 이에 따라 온라인 상에서 크롤링 금지와 콘텐츠 유료화가 갈수록 보편화되고 있습니다. 대표적으로 미국 최대 온라인 커뮤니티인 레딧은 구글과의 독점 콘텐츠 제공 계약 이후 구글 검색 엔진 외로 크롤링을 허용하지 않는 방향으로 정책을 변경했습니다. 앞으로 레딧에서 작성되는 콘텐츠는 레딧에 직접 접속하거나 구글 검색 엔진으로만 접근이 가능하게 된 것이죠. 이 때문에 마이크로소프트 빙과 같은 다른 검색 엔진과의 충돌도 있었습니다. 검색 엔진을 통해 온라인 정보 접근이 용이해지면 모두에게 이익이 될 수 있다는 전제하에 만들어진 robots.txt 파일명으로 유명한 크롤링 관련 규약이 AI로 인해 무너지고 있는 걸까요? 이전 레터에서 우려했던 상황은 다행히도 AI 기업들이 검색과 AI 학습 등 목적 별로 다른 크롤러를 이용하는 움직임이 자리잡아 크게 문제로 대두되진 않고 있습니다. 하지만 지금처럼 불신이 축적된다면 인터넷의 개방성을 더이상 당연하게 여길 수 없는 상황이 도래할 것입니다. AI 기술 개발을 위해 우리는 무엇까지 희생해야 하는 걸까요? 🦜더 읽어보기 닫힌 오픈AI를 다시 여는 방법 (2024-07-24) 2. EU AI 법 발효 이후 더 시끄러워질 우리나라 지난 3월 유럽의회에서 가결된 인공지능법(AI Act, EU AI법)이 드디어 발효되었습니다. EU AI 법의 대부분의 조항이 시행까지 2년의 유예 기간을 가지기 때문에 곧바로 변화가 생기는 것은 아닙니다. 다만 인권 침해 등 심각한 위험성을 가진 AI 시스템은 곧장 6개월 후부터 금지되며, 1년 뒤엔 생성형 AI와 같은 범용 목적의 AI 시스템에 대한 정보 공개 및 저작권 준수, 위험 평가 의무가 부과됩니다. EU 집행위원회가 2021년 처음으로 법안을 제안한 이래 유럽에서 관련 소식이 들려올 때마다 우리나라 역시 입법 논의로 들썩였는데요, 이번에도 마찬가지입니다. 22대 국회 개원 두 달 만에 6건의 AI 법안이 발의된 상황 속에서 무엇보다 정부의 추진 의지가 강해보입니다. 부처간 협의를 통해 마련된 AI 기본법 정부안을 마무리하고 있다고 밝혔고, 그에 앞서 대통령 직속의 민관협의체인 국가인공지능위원회를 두도록 하는 대통령령을 의결하며 마중물을 붓는 모습입니다. 최근 레터에서도 다뤘듯 국내 AI 기본법 논의가 산업 진흥에만 초점을 맞추고 각종 위험 통제를 위한 안전장치의 필요성을 축소하는 것은 아닌지 우려하는 목소리가 지속되고 있습니다. 특히 정부는 ‘시민단체 반대 의견’에는 귀를 닫고 있다는 의심을 받는 중입니다. 국가인공지능위원회와 같은 정책 논의 테이블에 누구를 앉히는지, 기업과 같이 특정 집단이 과대대표되지는 않는지 감시와 참여가 필요합니다. 🦜더 읽어보기 이 주의 정책 카드: 유럽연합 AI법(EU AI Act) (2023-06-19) EU AI법, ‘글로벌 표준’과 국경의 문제 (2024-03-18) 3. AI 버블 우려, 세번째 AI 겨울? AI 가성비를 의심하는 목소리가 계속해서 커지고 있습니다. 두달 전 세계 최대 규모의 벤처캐피털 세콰이어캐피털은 전세계적으로 AI에 투자된 금액을 6000억 달러로 추정하고, 이게 회수가 가능한 수치인지 의심을 표했습니다. 이어 지난 레터에서 다룬 것처럼 골드만삭스 등의 투자회사 역시 회의적인 시각을 담은 보고서를 내놓고 있습니다. AI 분야에 거품이 심하게 꼈다는 지적이 이어지며 주식 시장 역시 크게 영향을 받은 모습입니다. 사실 AI가 약속한 것은 직접적인 수익이 아닌 생산성 향상이기 때문에 투자이익률이 곧장 숫자로 잡히진 않을 수 있습니다. 하지만 AI가 과연 생산성 향상에는 도움이 되고 있을까요? 최근 진행된 설문결과에 따르면 꼭 그렇진 않은 것 같습니다. 기업 경영진은 생성형 AI가 생산성에 도움을 줄 것이라는 기대를 갖고 관련 기술을 도입했지만 직원들은 다른 입장을 보이고 있습니다. 설문에 응한 실무자 중 절반은 여전히 AI를 어떻게 활용해야 하는지 모르며, 오히려 도입 후 생산성이 저하되고 업무 부담만 가중되었다고 답한 사람이 대부분이었습니다. 물론 이러한 반응이 이제 막 개발중인 기술에 너무 빨리, 또 너무 많은 것을 바라는 것일 수도 있습니다. 하지만 기대감을 계속해서 부풀려온 AI 업계와 이에 반응해 쏟아져나온 수많은 AI 하이프 뉴스, 또 그에 비례하여 투자된 막대한 자원을 생각해보면 꼭 그렇지도 않습니다. AI 겨울을 기억하는 이들에게는 최근 소식들이 결코 좋은 신호로 보이진 않았을 것입니다. #feedback 오늘 이야기 어떠셨나요?여러분의 유머와 용기, 따뜻함이 담긴 생각을 자유롭게 남겨주세요.남겨주신 의견은 추려내어 다음 AI 윤리 레터에서 함께 나눕니다.
인공지능
·
1
·
부끄러운 일에 쉽게 쓰는 AI
부끄러운 일에 쉽게 쓰는 AI by 🎶소소 레터에서 많이 전하는 소식 중 하나는 AI로 인한 문제 소식일 텐데요. AI를 둘러싼 장밋빛 미래 뒤편에서는 AI로 인한 피해와 위험 사례를 모니터링하며 분석하고, 분류 체계로 정리하기 위한 노력도 이뤄지고 있습니다. 오늘은 그중에서 생성형 AI의 오용(Misuse)으로 문제가 된 실제 사례를 모아 분석한 연구 결과를 소개하려고 합니다. 이 연구는 AI의 기능적 결함으로 인한 피해를 제외하고 개인이나 조직이 AI를 의도적인 악용한 사례 약 200건을 살펴보았습니다. 가장 빈번하게 발생하는 AI 오용 사례는 특정 인물을 사칭(Impersonation)하거나 정보를 위조(Falsification)하는 형태로 나타났습니다. AI로 콘텐츠를 끊임없이 생산하여 증폭시키면서(Scaling and Amplication) 가짜 프로필을 이용해 여러 사람의 의견인 척하는(Sockpupetting) 행위도 다수 일어났습니다. 생성형 AI로 인한 피해가 어떻게 진화하고 있는지를 확인할 수 있었는데요. 흥미로운 점은 이렇게 AI를 악용하는 데 프롬프트 해킹과 같은 전문적인 기술이 사용된 경우는 손에 꼽았다는 점입니다. 그저 주어진 생성형AI의 기본 기능을 이용하는 경우가 다수였습니다. 그렇다면 사람들을 어떤 목적으로 AI를 악용하는 걸까요? 오용의 목적(Goal)을 유추하여 분류한 결과 1순위를 차지한 목적은 여론 조작이었습니다. 생성형 AI로 조작된 콘텐츠는 주로 전쟁, 사회 불안, 경제 위기와 관련된 수많은 소문과 음모론을 만드는 데 탁월하게 이용되었습니다. 바이든 대통령을 사칭한 음성 파일과 조작된 하와이 산불 이미지는 조직적으로 퍼지며 정치적 분열을 유도했습니다. 2순위로 꼽힌 AI 오용의 목적은 수익 창출이었습니다. 딱 봐도 생성형 AI로 쓴 것 같은 글로 도배 된 블로그를 한 번쯤 본 적 있으실 텐데요. <AI로 블로그 수익 자동화하는 법>은 유튜브에서도 떠오르는 콘텐츠 중 하나죠. 광고 수익을 얻기 위해 자동으로 생성된 저품질 AI 콘텐츠의 범람을 막기 위해 구글은 새로운 검색 정책을 발표하기도 했습니다. 저품질의 AI 생성 기사나 AI가 쓴 책이 양산되는 문제가 발생하기도 했습니다. 생성형 AI를 활용한 다수의 성 상품화 콘텐츠도 금전적 이익을 목적으로 거래되고 있었습니다. 사기는 AI를 오용하는 또 다른 동기입니다. AI가 생성한 영상이나 비디오를 사용한 화상통화로 직원 동료나 상사를 사칭하여 피해자의 돈을 갈취하거나, 조직의 상표나 로고를 그럴듯하게 모방한 피싱 이메일로 사람들을 속이는 사례가 증가하고 있습니다. 물론 악의적인 여론 조작과 사기 시도는 AI 등장 이전부터 있었던 문제입니다. 그러나 AI가 활용되며 문제가 빠르게 증가하고 악화되고 있습니다. 생성형 AI는 사람들을 더 정교하게 속일 수 있을 뿐만 아니라 싸고 쉽게 사용할 수 있기 때문입니다. AI 기업이 AI 모델이나 서비스를 배포하면서 자주 덧붙이는 말이 있습니다. “AI 모델은 완벽하지 않음을 주의하라.” AI 기업이 당사의 AI 모델의 완벽하지 않음을 인지하는 것은 중요합니다. 이용자가 비판 없이 AI를 사용하거나 악용하는 것 또한 분명 문제입니다. 그러나 만약 딥페이크 기술이 너무나 쉽고 빠르게 음란물을 만들어 문제가 된다는 사실을 알면서도 모른 척한다면, 기업이 사용자의 악용을 방치하는 것입니다. 이러한 방치가 음란물 제작을 딥페이크의 부작용이 아닌 순기능으로 만들고 있음을 주목해야 합니다. 이렇게 다양한 목적으로 사회 곳곳에서 문제를 만드는 AI의 악용을 어떻게 방지할 수 있을까요? 오픈AI, 구글, 메타 등 AI기업은 책임있는 AI 개발과 활용을 강조합니다. AI 서비스에 안전성 필터(Safety filter)를 적용하고 생성 AI 콘텐츠 탐지 및 워터마크 기술을 사용하는 등 여러 기술적 솔루션도 제안합니다. 그러나 이러한 기술적 조치가 만병통치약은 아닙니다. 악의적인 행위자의 기술도 발전하기 때문입니다. 때로는 AI를 사용하는 사람들을 직접 교육하는 방법도 도움이 될 수 있다고 합니다. 예를 들어, 조작된 정보의 확산을 막기 위해 사람들에게 조작된 콘텐츠 구분법을 알려주는 짧은 동영상을 시청하게 한 것만으로도 신뢰할 수 있는 콘텐츠를 구별하는 능력이 향상된다고 합니다. 예방접종과 같은 효과라고 합니다. 부끄러운 일에 AI가 쉽게 쓰이는 것을 막기 위해 앞으로는 기술적 연구뿐만 아니라 AI를 이용하는 사람에 영향을 미치는 사회적, 심리적 요인의 이해도 더욱 필요할 것으로 보입니다. #feedback 오늘 이야기 어떠셨나요?여러분의 유머와 용기, 따뜻함이 담긴 생각을 자유롭게 남겨주세요.남겨주신 의견은 추려내어 다음 AI 윤리 레터에서 함께 나눕니다.
인공지능
·
1
·
개인정보 가져가는 ‘교실혁명’
AI 윤리 뉴스 브리프 2024년 8월 첫째 주by 🍊산디 1. 개인정보 가져가는 ‘교실혁명’ 전국의 디지털 선도학교에서 활용하는 AI 교육 프로그램들이 학생들의 개인정보를 광범위하게 수집해왔다고 합니다. 쿠키 정보 수집, 스마트폰 단말기의 연락처 정보, 위치정보, 심지어 생체정보인 안면 데이터까지 ‘필수’로 수집한 사업자도 있습니다. 문제는 학생과 보호자들은 개인정보 수집과 그 활용에 대해 알기 어려울 뿐더러, 동의하지 않으면 교육 서비스를 이용하지 못한다는 데 있습니다. 정보주권 행사가 사실상 불가능한 겁니다. 이런 와중에 AI 디지털 교과서 사업은 진행 중입니다. 지난 23일 열린 국회 토론회에서 일선 교사들은 “AI 디지털 교과서 핵심기능들이 형편없다”고 토로했다고 해요. 정답률과 오답률, 정확도만 보여주는 대시보드에서 교사들은 교육에 참고할 정보를 얻을 수 없었다는 것이죠. 우리 교육의 목표가 정답률을 올리는 데 있는 것일까요? AI 디지털 교과서의 개인정보보호 정책, 콘텐츠 모두 빈약하다는 우려가 커집니다. 그럼에도 불구하고 이 사업을 서둘러야하는 이유가 궁금합니다. 설마 ‘있어 보이는 기술’을 도입하는 개인적 영광을 누리고 싶다거나, 행정적으로 이미 추진 중에 있어 무를 수 없다는 등의 이유는 아니겠죠. 교육부의 정책 우선순위가 뒤죽박죽이라는 느낌은 저만의 생각일까요. 💌 덧붙이는 글- 🍊산디: 교육 현장의 개인정보보호 이슈가 보도될 때마다 다문화가정의 학생들과 보호자들은 어떤 상황일지 상상해보곤 합니다. 한글에 익숙하지 않아 학생의 개인정보보호는 커녕 가정통신문을 읽는 것 자체가 허들이 되는 상황을 극복하는 것이 우선이지 않을까요. AI로 번역만 잘 해도 정보주권, 교육권이 훨씬 높아질텐데요. 🦜더 읽어보기- AI 디지털 교과서 도입 유보를 원하는 5만 명(2024-07-01)- 교사 개인정보 유출, AI 디지털 교과서는 준비 되었나(2024-06-03)- 외부인의 'AI 디지털교과서' 단상(2024-02-21)- AI 교과서는 우리 아이 데이터 채굴기?(2024-01-29) 2. 메타, 닫힌 인공지능을 열다? 메타가 자사의 최신 초거대언어모델인 라마 3.1(Llama 3.1)을 오픈소스 형태로 선보였습니다. 성능면에서 오픈AI의 GPT-4o, 앤트로픽의 클로드 3.5 소네트를 능가할뿐더러 운영비용도 절반 수준이라는 게 메타의 설명입니다 . 메타의 CEO 저커버그(Mark Zuckerberg)는 라마 3.1을 리눅스에 빗대며 오픈소스 AI가 ‘산업 표준’이 될 것이라는 비전을 제시했습니다. 메타의 오픈소스 정책은 후발주자가 산업 표준을 결정해볼 수 있는, 그럴싸한 시장 확보 전략으로 보이긴 합니다. 의도야 어찌되었든 메타의 전략은 연구자, 기업에게 새로운 선택지를 제시하며 시장·연구 생태계의 자원이 특정 기업에게 집중되지 않도록 완화할 것으로 예상됩니다. 오픈AI가 GPT-3를 ‘상품’으로 서비스하기 시작하면서 생성 AI 연구 생태계가 폐쇄적으로 변화하는 모습들이 곳곳에서 발견되고 있습니다. 라마를 비롯한 오픈소스 AI 모델들은 폐쇄적인 AI 연구 문화에 대한 대항마로 기능하고 있습니다. 한편 오픈소스를 좋은 것, 폐쇄형 모델을 나쁜 것으로 보는 이분법이 타당하지 않으며, AI 모델의 안전성과 목적에 따라 개방의 정도를 달리 정해야 한다는 주장도 존재합니다. 개방과 폐쇄 사이 어딘가에서 AI 연구 생태계는 어떤 변화를 겪고 있을까요? 연구자들과 개발자, 오픈소스 커뮤니티는 어떻게 대응하고 있을까요? 💌 덧붙이는 글- 🍊산디: 편의상 ‘오픈소스’라고 표현했습니다만, 라마의 이용 라이센스가 기존 오픈소스 정책과 부합하지 않는다는 비판 또한 존재합니다. 라마3.1의 라이센스 역시 앞선 버전들과 마찬가지로 월간 활성사용자(MAU) 7억명 미만인 경우에만 상업적 활용이 가능하다고 명시하고 있네요. 오픈소스를 어떻게 정의할 수 있을지, 정의가 불가능하다면 다만 개방-폐쇄의 스펙트럼 위에서 상대적인 비교만 가능한 것인지 의문이 남습니다. 🦜 더 읽어보기- 창작자와 환경 모두를 위한 개방형 AI(2024-07-24)- 오픈소스로 공개된 라마3(2024-04-22)- 이 주의 논쟁 카드: 라마(LLaMA) 2(2023-07-24)- 오픈소스 AI의 딜레마(2023-05-29) 3. 공개된 개인정보 처리: ‘정당한 이익’을 찾아서 지난 7월 17일, 개인정보위원회(개보위)는 <인공지능(AI) 개발·서비스를 위한 공개된 개인정보 처리 안내서>를 발표했습니다. 웹 스크래핑 등으로 수집되어 활용되는 공개 데이터가 개인정보보호법을 위반하지 않기 위해서 어떤 안전 조치를 취해야 하는지 그 최소 기준을 제시한 것입니다. 공개 데이터의 처리를 둘러싸고 국내외 모두 ‘정당한 이익’ 법리가 큰 쟁점이 되고 있습니다. GDPR 6조 1항은 개인정보의 처리가 적법하다 할 수 있는 사유 중 하나로 ‘정당한 이익(legitimate interest)’을 제시합니다. 공개된 개인정보를 처리함으로써 얻는 이익이 정당하고 정보 주체의 근본적인 권리와 자유를 침해하지 않는다면, 개인정보를 처리할 수 있다고 명시한 것이지요. 기업의 정당한 이익과 정보 주체의 권리를 비교하도록 했으니, 당연히 GDPR의 쟁점 조항이 됩니다. 우리 개인정보보호법 또한 기업의 ‘정당한 이익’이 명백하게 정보주체의 권리보다 우선한다면, 개인정보의 수집과 목적 범위 내에서의 이용이 가능하다고 규정하고 있습니다. 개보위의 이번 안내서는 개인정보보호법의 ‘정당한 이익’을 AI 분야에 어떻게 적용할지 그 기준을 제시한 것인데요. 개보위는 인공지능 개발 목적의 정당성, 공개된 개인정보 처리의 필요성, 구체적 이익형량 등 세 가지를 충족할 것을 요청하고 있습니다. 시민사회는 이번 안내서가 EU와 한국 법체계의 차이를 무시하고 무리하게 정당한 이익 법리를 확장했다는 입장입니다. 나아가 우리 개인정보보호법조차 제대로 지키지 않았다고 지적합니다. 정당한 이익은 메타, X(트위터)가 이용자의 포스트를 가져다 AI 학습에 활용할 수 있는 가장 큰 근거가 되고 있습니다. 한국의 법률 환경은 어떤 균형점을 찾게 될까요. 4. 여러분의 트윗은 생성 AI 학습에 쓰이는 게 디폴트입니다 구 트위터, X가 그들의 생성 AI 학습에 X 포스트, 상호작용 등을 활용하도록 하는 옵션을 배포했습니다. 문제는 기본값이 ‘허용’이라는 거죠. 이용자가 옵트아웃(opt-out)하도록 설계된 것입니다. 몇 달 전, 메타도 비슷한 접근을 취했습니다만, EU에 의해 제동이 걸렸습니다. 메타는 생성 AI 학습에 페이스북, 인스타그램 등 자사 서비스에 공개된 게시물과 이미지, 캡션 등을 활용할 계획이었습니다. 하지만 메타가 GDPR을 위반하고 있다는 시민단체의 고발이 있었고, 아일랜드 데이터 보호 위원회(Data Protection Committee, DPC)는 공개된 데이터의 학습을 연기하라고 요구했죠. 이 때도 이용자가 거부의사를 밝혀야만 개인정보 수집이 중단되도록 설계해둔 사실이 문제가 되었습니다. 저작권법은 오랜 법정 싸움을 통해 ‘기계의 읽기(복사)’는 저작권 침해로 보지 아니하는 법리를 마련해 왔습니다. 변형적 이용(transformative use), 의지적 행위(volitional conduct), 자동화된 처리에 대한 ISP 면책 등이 그것이죠. 기계의 읽기는 혁신을 위해 필요한 것으로서 장려되었습니다. 디지털 시대 저작권법의 인센티브 구조는 인간의 모든 커뮤니케이션을 기계가 읽어들일 수 있는 상태를 ‘디폴트’로 만들었습니다. 인간이 만들어낸 정보가 새로운 기술 개발에 공히 활용될 수 있어야 한다는 생각은 일견 타당해 보입니다. 하지만 정보의 바다라는 공유지는 기술 자원을 집중적으로 소유할 수 있는 기업에 의해 가장 적극적으로 활용되고 있습니다. 기계의 읽기는 어디까지 허용되어야 할까요. 지금의 옵트아웃 정책이 옵트인(opt-in)으로 바뀐다면, 그것으로 괜찮은 걸까요? 💬 댓글- 🧙텍스: 저작권법과 개인정보보호법 모두 개인보다는 기업에게 유리한 방향으로 결정되고 있는데, 이것이 사회에 가져다 주는 혜택이 무언지부터 논의하는 게 우선이 아닐까라는 생각이 듭니다.- 🎶소소: 메타는 EU에서의 라마3 배포 및 사용을 금지했습니다. 애플 EU 국가 내 역시 주요 AI기능 출시를 보류했습니다. 국가가 요구하는 AI 안전 규제에 맞춰 기업이 정책을 수정하는 것이 아니라, 해당 국가에는 AI기술을 제공하지 않겠다는 전략을 보며 더 이상 규제가 기업에 통하지 않는 것은 아닌지 두려움도 듭니다. 🦜더 읽어보기- 어도비 이용약관 개정 소동의 시사점(2024-06-17)- 당신의 동의를 구하지는 않았지만, 퍼가요~ (2024-06-10)- 데이터, 어떻게 팔아야 잘 판 걸까? ...팔아야 하는 걸까? (2024-03-25)- AI 학습용 데이터 팝니다 (2024-03-04)- 이용자 몰래 데이터를 활용하고 싶은 기업들 (2023-08-23) #feedback 오늘 이야기 어떠셨나요?여러분의 유머와 용기, 따뜻함이 담긴 생각을 자유롭게 남겨주세요.남겨주신 의견은 추려내어 다음 AI 윤리 레터에서 함께 나눕니다.
인공지능
·
5
·
닫힌 오픈AI를 다시 여는 방법
창작자와 환경 모두를 위한 개방형 AI by 🧙‍♂️텍스 생성형 AI 구축에 필요한 큰 비용은 오픈AI를 폐쇄적으로 변하게 했습니다. 오픈AI는 GPT-2 발표 당시 논문과 모델을 모두 공개했고, 이는 여전히 오픈소스로 이용 가능합니다. GPT-3 역시 논문만큼은 공개했습니다. 하지만, 챗GPT 서비스가 발표된 이후부터는 그 모습이 다릅니다. 공개된 GPT-4 테크니컬 리포트에는 모델과 데이터에 대한 디테일이 사라졌습니다. 그리고 GPT-4o에 이르러서는 모델에 관해 공개된 내용이 없습니다. 다른 회사들이 챗GPT를 빠르게 추격하는 상황에서 큰 비용을 들여 얻은 시행착오를 공개하기는 어렵습니다. 오픈AI가 창작자의 이익보다 공정이용(fair use)을 주장하는 것은 지출을 줄이기 위한 의도 또한 있을 것입니다. 생성형 AI는 공개된 콘텐츠를 자유롭게 학습 데이터로 활용하지만, 기존의 검색엔진과 다르게 원본 출처로 연결하지 않습니다. 그렇다 보니 대규모 데이터를 보유한 신문사나 커뮤니티를 보유한 기업들은 AI 플랫폼 기업의 데이터 수집을 막고 학습 데이터 판매 협상 우위를 점하기 위해 장벽을 쌓고 있습니다. 인터넷의 포스팅 및 기사는 로그인해야만 볼 수 있고 추가로 결제 장벽(Paywall) 또한 빈번해지고 있습니다. 기업과 다르게 협상력이 없는 개별 창작자는 창작물에 대한 권리를 침해당한다고 느끼고 이러한 변화를 거부로 응답했습니다. 한국에서는 네이버웹툰 도전 만화에서 AI 웹툰 보이콧이 있었으며, DeviantArt와 같은 주요 글로벌 창작자 커뮤니티들에서 No AI 태그 시스템에 도입하였습니다. 그 결과 점차 인터넷 공간은 폐쇄적으로 변해 갑니다. 생성형 AI를 구축하기 위한 레이스는 일종의 죄수의 딜레마로 보입니다. 챗GPT를 만들고 싶은 경쟁자들은 오픈AI가 수행했던 학습 데이터 수집과 AI 학습의 모든 과정을 경쟁적으로 반복해야 합니다. 이러한 과정을 모든 AI 플랫폼 기업들이 따라 하다 보니 엔비디아 GPU가 불티난 듯 팔리고, AI 학습을 위해서 발전소를 추가로 지어야 하고, 데이터 센터의 높은 에너지 소비로 인한 기후 위기 가속화까지 예상이 됩니다. 어찌 보면 오픈AI가 여전히 비영리 기업으로 남아서 모델을 공개했다면 이러한 일이 일어나지 않았을 수도 있습니다. 데이터셋의 구성 및 학습된 모델이 모두 공개되어 있으면 모든 회사가 경쟁적으로 LLM 학습을 수행할 필요가 없습니다. 오픈AI가 공개한 모델을 필요에 맞게 수정하고 미세조정하는 것은 전체 학습에 비해 매우 적은 비용이 들기 때문입니다. 현 상황에서 죄수의 딜레마를 피하기 위해서는 기업들의 협력을 통하여 하나의 좋은 모델을 만들도록 유도할 수 있습니다. 가령 어떤 국가의 정부가 해당 국가의 문화, 가치관 등이 담긴 소버린(sovereign) AI를 구축하길 원한다면, 정부는 개별 회사들의 AI 모델 구축을 위한 경쟁을 지켜보기보다는 하나의 거대한 AI 모델을 구축하도록 관련 기업 간의 협력을 유도해야 합니다. AI 모델의 규모가 커질수록 성능이 좋아진다는 신경망 스케일 법칙(neural scaling law)을 고려하면, 개별 기업의 중복 투자를 협력으로 전환하면 같은 비용으로 더 큰 모델을 학습할 수 있습니다. 개별 기업에서는 적은 비용으로 더 좋은 성능을 갖춘 생성형 AI를 구축할 수 있고, 국가 차원에서는 전력 인프라 투자의 비용도 절감할 수 있기 때문입니다. 근본적으로 인터넷 공간이 폐쇄적으로 변해가는 것을 막고 죄수의 딜레마에서 벗어나기 위해서는 개방형 AI 모델이 다른 폐쇄형 AI 모델보다 비용이나 성능 측면에서 우위에 있는 환경을 조성해야 합니다. 현재의 월드와이드웹(WWW, world wide web)이 인터넷의 대명사가 된 것처럼 말이죠. AI 모델이 학습 데이터의 품질에 종속적이라는 사실을 생각해 보면, 이를 위해서는 1) 창착자들의 참여를 끌어내서 개방된 데이터의 규모와 품질을 최대한 끌어내고 2) 공개된 데이터에 무임승차 하는 플레이어가 없도록 해야 합니다. 우선 콘텐츠의 저작권 및 라이선스 제도를 AI 시대에 맞게 업데이트하여 생성형 AI 시대에 약해진 창작자의 권리를 보완하고 참여를 끌어내야 합니다. 또한 무임승차를 막고 창작자의 권리 강화를 위해서 이상적으로는 명확한 출처를 밝히지 않은 데이터로 AI 모델 학습이 불가능하게 만드는 것도 고려해 볼 수 있습니다. 현재 메타와 오픈AI 모두 학습 데이터를 임의로 구축하여 학습에 사용하고 옵트아웃을 데이터 거버넌스로 하여 사용자가 제외를 요청할 때만 학습 데이터에서 제외해 줍니다. 이 모습은 공정이용보다는 무임승차에 가까운 것 같습니다. 유튜브는 광고 수익 분배를 발판 삼아 양과 질 측면에서 모두 독보적인 동영상 플랫폼으로 자리를 잡았습니다. 창작자에게 유리한 데이터 거버넌스가 확립되고 개방형 생태계가 독보적인 학습 데이터를 얻을 수 있는 곳이 되면, 플레이어들은 그곳의 룰을 따를 수밖에 없을 것입니다. 즉, 기업들은 다시금 개방형 AI를 선택해야 하는 환경에 놓이게 될 것입니다. 🦜더 읽어보기- 생성형 AI 가성비를 의심하는 골드만삭스/깃허브 코파일럿 소송에서 저작권법 쟁점 기각 (2024-07-21)- 원전으로 AI 전력 수급한다는 한국 정부 (2024-06-17)- 이 주의 논쟁 카드: 라마(LLaMA) 2 (2023-07-24)- [함께 읽는 FAccT 3]윤리, 법, 기술! 세 가지 힘을 하나로 모으면🌐🎵 (2023-06-19)- AI 웹툰 보이콧, 누구를 위한 AI인가 (2023-06-05) #feedback 오늘 이야기 어떠셨나요?여러분의 유머와 용기, 따뜻함이 담긴 생각을 자유롭게 남겨주세요.남겨주신 의견은 추려내어 다음 AI 윤리 레터에서 함께 나눕니다.
인공지능
·
3
·
생성형 AI의 가성비는?
AI 윤리 뉴스 브리프 2024년 7월 넷째 주by 🤖아침 1. 생성형 AI 가성비를 의심하는 골드만삭스 지난달 골드만삭스에서 “생성형 AI: 지출은 너무 많고 혜택은 너무 적은가? (Gen AI: too much spend, too little benefit?)”라는 제목의 보고서를 내놓았습니다. 생성형 AI가 비용이 많이 들어가는 기술인 데 비해 수익이나 생산성 측면의 이득이 얼마나 될지 회의적이라는 내용입니다. 보고서에서 인터뷰한 대런 아세모글루(Daron Acemoglu)는 AI가 거시경제에 미칠 영향이 미미할 것이라고 전망합니다. 기술낙관론(기술 발전에 따른 비용 절감 및 성능 개선으로 생산성이 자연스레 높아질 것이라는 관점)에 대해서도 “’AI 성능이 두 배가 된다’는 게 무슨 뜻인가? … 격식 없는 대화에서 다음 단어를 예측하는 능력이 GPT 다음 버전에서 향상될 수는 있겠지만, 그렇다고 상담원이 고객의 문제를 해결하는 능력이 꼭 개선되는 건 아니다“라며 의문을 제기합니다. 골드만삭스 연구총괄 짐 코벨로(Jim Covello)는 “오늘날 AI를 초기 인터넷과 비교하는 사람들이 많지만, 인터넷은 초창기에도 저비용 기술이었다”라며, 향후 몇 년 사이 인프라 비용으로만 1조 달러가 투입될 것으로 예측되는 생성형 AI의 투자 대비 수익률에 회의적인 시선을 보냅니다. 투자를 합리화하려면 AI로 복잡한 문제를 해결할 수 있어야 하는데, 현재 AI는 복잡한 문제를 해결하도록 설계된 기술이 아니라는 것입니다. 맥킨지에서 생성형 AI의 부가가치가 4조 달러에 달할 것이라는 희망찬 보고서를 발표한 것이 불과 1년 전인데요. 금융 분야의 큰손이자 불과 두 달 전만 해도 AI의 경제적 효과를 낙관하던 골드만삭스에서 비교적 부정적인 전망을 내놓은 데서, AI를 둘러싼 거품이 조금씩 꺼지는 분위기를 읽을 수 있습니다. 2. 깃허브 코파일럿 소송에서 저작권법 쟁점 기각 생성형 AI 관련 주요 법적 쟁점 하나는 저작권이죠. 그 중에서도 이목을 끄는 사건으로 깃허브 코파일럿(GitHub Copilot) 관련 소송이 있습니다. 코딩 보조 툴 코파일럿을 제작하는 과정에서 개발자들의 코드를 활용한 것이 불법이라는 취지로, 오픈소스 개발자들이 깃허브, 마이크로소프트, 오픈에이아이 세 기업을 상대로 2022년 미국에서 제기한 소송입니다. 최근 소송을 건 개발자들에게 불리한 판결이 나왔습니다. 코파일럿에서 추천하는 코드가 원본 코드와 동일하지 않다고 보아 미국 저작권법(DMCA) 관련 쟁점을 전부 기각한 것입니다. 다만 코파일럿 측의 행위가 (오픈소스 코드를 재사용할 때 명시해야 하는) 원저작자·저작권 고지·라이선스 등을 생략하거나 오도하여 오픈소스 라이선스에 저촉되며, 깃허브 개인정보 처리방침 및 이용약관을 위반했다는 쟁점 두 가지는 아직 열려 있습니다. 아직 법적 회색 지대인 생성형 AI 저작권 이슈에서 코파일럿 소송은 상징적 판례가 될 수 있습니다. 물론 이후에도 분쟁은 생길 것이고, 국가별 저작권법에 따라, 분쟁이 발생한 분야에 따라 그 양상은 조금씩 다르겠지요. 이 소송의 향방도 중요하지만, 일련의 저작권 분쟁에서 드러나는 큰 그림 또한 놓치지 않아야 하겠습니다. 기존에 공개·공공적으로 존재하던 데이터를 포획해서 특정 기업의 것으로 사유화하는 AI 산업의 속성 말입니다. 3. 국민의힘 인공지능법안에 관한 시민사회의 우려 한국에는 아직 인공지능 기술에 관련된 체계적 법이 없습니다. 현 정부에서 입법을 추진했지만 지난 21대 국회에서는 통과되지 않았는데요. 22대 국회가 시작한 지 두 달 사이 6개 AI 법안이 발의되는 등 입법 논의에 속도가 붙고 있습니다. 한편 시민사회에서는 현재 추진 중인 법안, 특히 국민의힘 소속 의원 전원이 이름을 올린 정점식 의원 발의안이 인공지능의 위험을 줄이고 예방하는 일에 소홀하다고 우려합니다. 산업 진흥에만 초점을 맞추며, 위험성을 통제하고 피해에 대한 책임을 명확히 하는 문제는 마치 산업 발전의 발목을 잡는 것처럼 외면하고 있다는 것입니다. 최근 14개 시민단체가 공동으로 발표한 의견서는 EU 인공지능법 및 미국 AI 행정명령 등을 참고하여 앞선 여당 발의안을 비판적으로 검토하고 있습니다. 주요 쟁점은 안전과 인권 규제의 부재, 고위험 인공지능 규제의 부재, 범용 인공지능 관련 내용 부재, 금지/처벌 조항 부재, 그리고 과학기술정보통신부 및 대통령 산하 국가인공지능위원회에 지나치게 집중된 거버넌스 구조 등입니다. 인공지능법에 어떤 내용이 담겨 통과되는지에 따라 향후 AI 산업뿐만 아니라, 우리 모두의 삶과 AI 기술이 맺는 관계의 양상이 달라지게 됩니다. 더 많은 이들이 시민으로서 관심을 갖고 해당 논의에 참여해야 할 이유입니다. 입법 과정에서 국회 및 시민단체가 진행하는 각종 토론회 및 공청회에서 구체적으로 어떤 이야기가 오가는지 직접 확인하는 것도 하나의 방법입니다. 🦜더 읽어보기 [요약] 한국 AI 규제 총정리 (🦜AI 윤리 레터, 2023-11-13) 4. 인권위의 인공지능 인권영향평가 도구 국가인권위원회에서 “인공지능 인권영향평가 도구”를 만들었습니다. AI 시스템을 개발 및 활용할 때 사람들에게 미칠 수 있는 부정적 영향을 점검하고 예방하기 위해 사용 가능한 체크리스트입니다. 아직 AI 관련 법규제가 없는 상황이지만, 각 영역에서 AI 기술을 도입하려는 움직임은 활발합니다. 이런 상황에서 공공기관이나 고위험 AI를 도입하는 민간 주체가 기술 위험을 완화하기 위해 자율적으로 사용하도록 위 도구를 제안한 것입니다. 산업 촉진 일변도인 행정부 방향성과 비교해, 인권위는 2022년 AI 인권 가이드라인을 마련해 제시하는 등 균형잡힌 접근을 강조해왔습니다. 이와 같은 접근이 실제 정책으로도 반영될 수 있기를 기대해봅니다.
인공지능
·
2
·